
THOMASON COLLEGE, FOR CIVIL ENGINEERS

- AOORKEE
Designed \& Built by It? George Price,
1ṣt Fusileers

$\mathbf{R} \mathbf{E} \mathbf{P} \mathbf{O} \quad \mathbf{R} \mathbf{T}$

ON THE

GANGES CANAL WORKS:

FROM THEIR COMMENCEMENT

UNTIL THE OPENING OF THE CANAL IN 1854.

uy
COLONEL SIR PROBY T. CAUTLEY, K.C.B., F.R.S., hate of the mengai. artillegy, honorary memmer of the asiatic soctety of mengal. dNil date director of the ganges canal works.

> VOL. III.

Printed by Order of the Secretary of State for India in Council.

LOND0N:
SMITH, ELDER AND CO., 65, CORNHILL.

LONDOR:
PRINTED NY SMITH, ELDER AND CO., little oreen arbour cotrt, old ballbt, m,C.

LIST 0F APPENDICES.

HAGE
A.-On the supply of Materials to the Northern Division Works l
B.-Report of a Committee assembled by order of the Right Honourable the Governor-General of India to report on the Unhealthiness of Kurnaul, and the probable effect on Health to be produced by the Ganges Ganal 24
C.-Manner of keeping Accounts in the Canal Department, and form of Quarterly Bills 59
D.-General Instructions to Executive Officers of the Ganges Canal Works, by Major W. E. Baker 111
E.-Major Baker's Report on the Ganges Canal Works on making over Charge 131
F.-Calculations for Discharges and Capacities of Channels, from Report of 1845 142
G.-Tabular Statement of Measurements of Hindun River 152
H.-Instructions for forming Embankments and Plantations 154
I.-Table of Depressions of Bridge Arches on Striking Centres 158
J.-Table of certain Statistics of each Work 190
K.-Reports on the Dimat and Bhosan Bridges 212
L.-System of Account-keeping introduced into the Roorkee Workshops by Mr. Harry Marten 218
M.-List of Books in the Ganges Canal Library 235
N.-Valuation Statements of Property at Cawnpoor falling within the Canal Boundaries 243
O.-Captain Goodwyn's Report on the Sinking of the Solani Aqueduct Foundation Blocks 468
P.-Table of Depressions of the Solani Aqueduct Arches on removing Centerings 288
Q.-Estimate in Abstract of the Works on the Ganges Canal, 1850 292
General Index 297

THE GANGES CANAL.

A P PENDIX A.

NORTHERN, on FIRST DIVISION.

Bricr-Making.

Turs division, whilst the works were in progress of construction, included the first twenty-four miles of the canal, and comprehended the whole of the works necessary for the passage of the canal through the khadir of the Ganges on to the high land of the Doab. From the magnitude of many of these works, and the impossibility that a sufficient number of bricks for them could be manufactured by the methods ordinarily in use in India, an account of our operations in this respect will be peculiarly interesting, and be the means of placing on record data, which will, perhaps, be valuable to the conductors of future undertakings of an extensive nature.

The following abstract gives in one view the several works constructed, and the grand total cubic content of masonry for which material had to be provided; the figures in this abstract are derived partly from the bills submitted by the exccutive engineers, and partly from the estinates where bills have not been submitted:-

From a further abstract, it is found that of this mass of masonry, the following quantity is composed of brick:-

And if we add to these the pukka and peela brick masoury contained in the Civil Engineers' College buildings, the tulseel kutcheri, the station church, bazaars, road bridges, and the private dwellings of the subordinates attached to the division; for the whole of which bricks were supplied from the Government , vol. ini.
manufactories ; we obtain an approximation to the total quantity of masonry for which the brick manufactories had to furnish bricks.

In Ganges Canal Works In Civil Engincers' College Buildings,				\cdots	Peela Brick Masonry	Pukka Brick Masorry.	
				Cubic Feet. $542,375$	Cubic Feet. $17,148,714$		
				629,200	419,441		
In Private Dwellings	-			...	390,000	75,000
Totals	1,561,575	17,643,155

And this is, morcover, independent of an immense quantity of broken brick which was used in ballasting the lines of railway, forming roads, \&c. \&c. the content of which cannot be estimated.

From the condensed abstract at the end of this paper, it will be seen that the actual number of bricks manufactured for the construction of the masonry above exhibited has been-

Work in brick-making was commenced in this division in January, 1842, wnder the management of Mr. Thomas Wright, an uncovenanted assistant in the canal department. Our object at that period was to establish as many kilns as possible at every available village in the vicinity of the line to be taken up for the canal, and these kilns were to be of the ordinary pattern of "Puzawa" (vide plan, sheet No. 1), in constant use with the natives of India. For the working season of 1841-42, Mr. Wright reported that he had obtained contractors for the manufacture of bricks to the extent of 54 lakhs; and had commenced on a small scale a few kilns, independently of contractors, the principal portion of the fuel used in which, was wood obtained from the neighbouring jungles. On the 1st March, 1843, the executive control of the division was assumed by Lieut. R. Strachey, of the Bengal Engineers; and at an early period he reported, that for the season of 1842-43, fifty-three kilns were in progress of burning under contractors. For the season of 1843-44, contracts were made for 1332 $\frac{1}{2}$ lakhs; and for the season of 1844-45, the contracts in existence amounted to 145 lakhs. For the season of 1841-42, Mr. Wright's contract-rates were 350 rupees for pukka bricks, $12 \times 6 \times 2$; and 200 rupees for peela bricks of the same dimensions. Lieut. Strachey, considering that a thickness of 2 inches was too little for the length of the brick, made all his contracts for $2 \frac{1}{2}$ inch at 435 rupees per lakh for pukka, and 250 rupees for peela bricks, only such peela bricks being paid for at this rate as were taken for use on the works.

During the last-mentioned working season (1844-45), Lieut. Strachey perceived that the total out-turn of pukka bricks had been quite incommensurate with the advances of money that had been made, and he determined not to enter into further contracts until the accounts of the existing contractors had been cleared off; this, however, as will be seen hercafter, was never accomplished. At the latter end of 1845, Lieut. Strachey was called awny on feld service with the army of the Sutlej; and on his return, the state of his health obliged him to proceed to the hills on medical certificate; his place being filled by Lient. Henry Yule, of the Bengal Engineers.

The final results of Mr. Wright's and Lieut. Strachey's operations, from January, 1842, to June, 1846, in brick-making, were as follow :-

The return in bricks for the above expenditure was:-

Grand total of all sorts, $154,34,406$, and the actual cost of the bricks was, therefore-

which, for pukka bricks, is considerably in excess of the rates at which contracts had been entered into. The department kilns upon which Co.'s rupees 1869-13-6 had been expended, were entire failures, and this being known to Lieut. Strachey as soon as he joined, he discontinued the experiment. Setting this amount aside, and confining ourselves to the contractor's accounts, we find that-

With one exception, the contractors against whom balances existed, were men of straw ; every effort was made to get them to fulfil their engagements, or to rcfund, but all failed: and it was determined by Major Baker, the director at that time, that legal proceedings instituted against them, could lead to no other result than the addition of a large amount for law expenses to the heavy losses which had already been sustained.

The failures on the part of most of the contractors were undoubtedly due to the following causes:-
1 st. The impracticability of obtaining from the villages situated within the small circle to which our operations were necessarily confined, a sufficient quantity of the requisite fuel, with which to burn the large number of bricks moulded.

2nd. To neglect on the part of the contractors, and their habit of stinting the kilns in fuel unless constantly watched.

3rd. To the want of intelligent European supervision: for a long time Lieut. Strachey had no overseers, and when he did get them they were unacquainted with the work.

1846 and 1846-47.-From June, 1846, to the end of the working season of 1846-47, the brick-making operations were carried on under the superintendence of Lieut. Yule. The little success that attended Lieut. Strachey's arrangements for contract bricks rendered it imperatively necessary that we should depend for our chief supply of this matcrial on our own kilns, burned with wood fuel. The measures adopted for this purpose, and the progress made during this period, are thus described by Major Baker, in his final report on the Ganges Canal Works, dated 11th January, 1848 :-
"A small commencement of the arrangements for this purpose was made in 1846, after the close of the Sutlej campaign, but it was then too late in the season to obtain any satisfactory results. In the cold weather
of 1846-47, a number of new kilns were built, both at Roorkee and Muhewur, and considerable quantities of firewood were cut in the forests and carted to the works. During the early part of the season many circumstances combined to render the result of these operations very unsatisfactory. Great pains had been taken to ascertain the method of burning bricks with wood, as practised at Umballa and elsewhere; but our people did not at first get into the way of loading the kilns properly; and this, combined with a long duration of unfavourable weather, and the greenness of the firewood, rendered the operations of the cold weather almost entirely unprofitable. At the commencement of the hot season, however, a change for the better became apparent: two new descriptions of kiln were tried with better success, and before the setting in of the rains we had turned out about 38 lakhs of serviceable bricks from the English kilns."

The first description of Englisk kiln tried at Roorkee was that used with considerable success by Major Napier at Umballa : it failed, however, with us, and this may be attributed to three causes-

1st. Using dhâk wood instead of bubool, or other hard woods.
2nd. Using koord instead of the light chupper grass, employed at Umballa to equalize the surface of the layers of wood.

3rd. Ignorance of the proper management of the fire by means of the flues and the surface covering of ashes.

The second method attempted was that described in the sixth part (vol. iii.) of Weale's Quavterly Papers on Cicil Engineering as that practised in Holland. It entirely failed; the consumption of wood was greater than in the first experiment, and the result more unsatisfactory.

The third experiment was made with a flame kiln, such as is used in England with faggots; a few good loricks were obtained by this method, but not in a proportion that would warrant a second trial.

The fonrth method was introduced by a pilgrim passing through Roorkee, who offered to take service as a brickmaker. His plan was somewhat similar to Major Napier's, and he understood its management; the produce of his kilns were comparatively good.

The fifth method was taught us by men obtained from Benares; it was less certain than the fourth method, and more dependent on the quality of the wood, but the bricks were less broken and of better quality.

A more detailed account of the manner of working the kilns above alluded to will be given when Mr. Finn's operations are under discussion.

Sixteen kilns of the above patterns, as also the small flame kiln, were built by Lieut. Yule, and he established three Hindustani kilns, under the supervision of Government servants. The first fifteen fillings of the English kilns turned out unmitigated failures, the whole of the bricks being peela. The whole number of kutcha bricks moulded was $67 \frac{1}{2}$ lakhs; of which there were-
$\left.\begin{array}{cccccccc}\text { Loaded in English kilns } & \ldots & \ldots & \ldots & \ldots & \ldots & 49 \cdot 8 & \text { laklıs. } \\ \# \quad \text { flame kilns } & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & 1 \cdot 5\end{array}\right) "$

And the total out-turn from them was-Pukka bricks, 38 lakhs; peela ditto, 11 lakhs; janior, about 50,000 cubic feet. The cost of these, including construction of kilns, clearance of ground, opening out of roads, and all the implements requisite in this sort of work, was Co.'s rapees 65,638-7-93, which gives the following rates for the manufactured material:-

Pukka bricks, $12 \times 6 \times 2\}$, at works								
					per
Peela	"	"		\cdots	...	\cdots	450	
			at kilns				250	

The cost of turning out moulded and dried bricks was approximntely $7,559 \mathrm{Co}$.'s rupees, and consequently the cost of kutcha bricks was 112 Co.'s rupees per lakh. Besides the $49 \cdot 8$ lakhs shown alove to have been placed in the English kilns, there were 13.6 lakhs of pecla bricks reburned in these kilns, making a total of $63 \cdot 4$ lakhs, from which were derived only 31 lakhs of pukka bricks, or less than one-half of the whole

Sheet $N^{\circ} .2$.
Sketch of a

PILGRIMKILN.

Transverse Section of a Pilgrim Kiln.

Section on the Line A.B .
Scale of $7 \frac{1}{2}$ Feet an Inch.
number. The results of the Hindustani kilns were good, being $3 \frac{1}{2}$ lakhs of pukka bricks out of the $4 \frac{1}{2}$ lakhs piled into kiln; and had it been possible to burn them entirely with litter and oopla, instead of the more expensive article of wood, which had to be put in to make up the deficiency, they would have been cheap bricks.

The operations during the season of 1846-47, carried on under Lieut. Yule, should be looked upon as the commencement of a series of experiments, the cost of which, though great in itself, was comparatively small with regard to the future expenditure; and in closing the summary of progress up to this period, it is but the just due of the officers who lad been engaged on the works that I should repeat the concluding remarks contained in Major Baker's report, when making over to me the directorship of the canal in January, 1848, viz.:-" The executive officers have had to struggle with many difficulties, the conquest of which, though it has smoothed the path of their successors, has doubtless enhanced the cost of their own work; and it is important to bear this in mind, and to be cautions in drawing unfawourable comparisons between the cost of past and future work, and in attributing to the superior care and management of future executives an improvement in economy which may be chiefly due to the results of their predecessors' labours. The power requisite to maintain the regular and equable motion of a vast machine, is no measure of the force required to set it going."

1847-48. - The commencement of the working season of 1847-48 formed an entirely new era in the works on the Ganges Canal. The Government had by this time been moved to sanction their vigorous prosecution, and all the former restrictions as to the amount to be expended annually were taken off. The works alone in this division were considered amply sufficient for the supervision of the executive engineer ; and a separate officer was appointed for the manufacture and supply of material. Mr. Finn entered upon the latter duties in October, 1847.

There were several evils that existed in the arrangements made by Lieut. Yule with regard to the relative situations of the moulding grounds, tughars, and kilus; but as work had commenced actively under the executive engincer, and the call for bricks was very urgent, there was not time, in the first instance, to rectify them; Mr. Finn, therefore, began with the fields and kilns as left by Lieut. Yule, and made the improvements so much needed gradually: before the close of the season, Lieut. Yule's kilns were almost entirely superseded by new ones, built more substantially, and situated in closer proximity to the drying grounds. The operations were conducted with variable success, and always at a heavy expense. Nevertheless, the turn-ont of pukka bricks was highly satisfactory, as compared with the results of former years, and a method of burning was hit upon which seemed to promise well for the ensuing season. Two Hindustani kilns were established on the Roorkee fields under the supervision of the Government establishment, and were very successfully worked; and several other kilns of this description were set in progress either by contract, or by hired labour supervised by Government servants, at villages within a reasonable distance from the works, where the appropriate fuel was obtainable.

The different systems pursued by Mr. Finn may be described thus; the description being a precis of that officer's reports.

> FIRST, on PILGRIM MODE, vidc "Plan and Scctions" (Sheet, No. 2).

This mode takes its name from the pilgrim referred to in the account of Lient. Yule's operations. The floor of this kiln is hollowed out to a depth of $1^{\prime} 6^{\prime \prime}$ in the centre, with side slopes up to the level of the mouth of the flues; the flues are at 2 feet intervals, 2 feet in width, 2 feet in height, and are carried 5 feet inwards from every side of the kiln; at that distance they cease, and the whole interior is packed with wood to the top level of the flucs; two courses of luricks are then laid on edge, and over that the wood and bricks in alternate layers. The results of the kilns filled on this system were uncertain; the average return was 54 per cont. of pukka on the kutcha bricks pilecl, but the greater number of the former were broken; the bottom layer, and the bricks in a space of 5 feet all round the walls of the kiln, were always peela, and janior was invariably found in the centre. Great damage was done to the walls of the kiln by the heavy
pressure of the bricks against them in sinking as the wood was consumed. After trials, this system was abandoned, as there appeared little hope of success.

The quantity of frewood used per lakh of bricks was 3,300 maumds.

SECOND, on BENARES MODE, vide "Plan and Section" (Sheet, No. 3).

The floor of the kiln is first levelled off, and the bricks are then packed in tiers of arched flues throughout the kiln; the flues are all 3 feet wide at bottom, the piers are 1 foot, or one brick only, in width, and four bricks high, from whence the arched is commenced and closed with the tenth tier, making the flues 5 feet high. When the lower tier of flues is completed, a second tier is built thereupon, crossing it transversely; on the second is built a third tier, which completes the kiln. The wood is carefully packed into each flue as it is constructed, and all interstices filled in with chips. The average result of kilns so filled was 55 per cent. of pukka on the kutcha bricks piled. The bricks of the lower tier flues, and many in the shoulders of the arches, turned out peela, whilst in the centre of the kiln large quantities of janior were found, owing, partly to the want of proper distribution of the wood, and partly to the breaking in of the flues, which drawing the fire to particular parts caused vitrefaction.

The quantity of firewood used per lakh of bricks was 3,200 maunds.

THIRD SYSTEM, vide "Plan and Section" (Sheet, No. 4).

This was an endearour made to improve upon the Benares mode. The lower part of the kiln was packed with a tier of flues similar to the Benares method, and completed with alternate layers of wood and bricks, the lower layer being always less than the upper one in depth or thickness. In some of the kilns 2 feet of wood and a layer of five bricks in depth was placed immediately over the flues; in others, 2 feet of wood and four bricks were tried, and over this, to form the second layer, 2 feet of wood and five, six, and even seren bricks in depth were placed. The average result of this mode was 55 per cent. of pukka bricks. The lower portions and sides of the kiln were bad, turning out peela and much broken bricks; the lower centre prodaced janior, whilst the upper centre and the entire upper layer were very good. Damage was done to the walls of the kiln in the same way as to those of the "Pilgrim" kilns.

The quantity of wood used per lakh of bricks was 3,300 maunds.

FOURTH, or " SIND FLAME KILN," vide " Plan," \&c. (Sheet, No. 5).

An experimental kiln on this plan was built, its interior dimensions being $20^{\prime} \times 12^{\prime}$, and it was sunk 3 feet into the ground; the exterior walls were raised 3 feet high by $1^{\prime} 9^{\prime \prime}$; the two side walls were perforated by three arched flues, each 3 feet wide, 2 feet high, and the centres of each arch were 5 feet apart; these flues were carried across through lines of longitudinal walls built in the interior of the kiln, each wall being 3 feet ligh, $1^{\prime} 6^{\prime \prime}$ wide, and about 6 inches apart; it was completed by raising the exterior walls to a height of 8 feet, the additional 5 fcet being only $1^{\prime} 6^{\prime \prime}$ wide, which left a shoulder, 3 inches in breadth, on a level with the longitudinal walls for the bricks of the lower line to rest on. The kiln was filled by laying the bricks on edge on the top of the interior walls, the flues having been first packed with wood; the first four layers were placed openly, the bricks of the lowest one about 2 inches, and those of the fourth about 1 inch asunder; the remaining six layers required to complete the kiln were packed closely. The kiln contained 7,800 bricks, and was loaded three times, with the following results: 1st result, 56 per cent. ; 2nd, 71 per cent. ; 3 rd, 38 per cent. (with large well bricks 3 inches thick). On each occasion it was fired vigorously for 60 hours; when the fire reached the second line of bricks from the top, the kiln was covered in by a layer of ashes 3 or 4 inches thick.

The quantity of wood used to each kiln was 350 maunds, or about 4,500 maunds to each lakh of kutcha bricks.

The advantages in these kilns were, that they were more readily packed than the larger kilns; and the

Scale, 10 Feet to an Inch.

SKETCH OF THE
MODIFIED BENARES KILN.

Scate 10 Fed to Ine Inch

Scale, 10 Feet to an hich.
Transverse Section of $2^{\text {nd }}$ and $3^{\text {rd }}$. Rows

$$
\begin{gathered}
\text { Shect } \mathrm{N}^{\circ} 6 \text {. } \\
\text { SKETCH } \\
\text { of a } \\
\text { ROORKEE FLAME KILN. }
\end{gathered}
$$

Sheet NO. 7.
To face Page 7.
Vol. 3.
Sketch of a

Half Elevation Half Section of Newkiln with 2 Bricks thick.

Scale 10 Feet to an Inch.
large proportion of whole bricks obtained from them. The disadvantages were, the great expenditure of wood, and the injuries sustained by the arches of the interior longitudinal walls by every firing.

Encouraged by the favourable results of the above described small kilns, Mr. Finn tried others on a larger scale, and with the view to economizing the expenditure of wood; and following out the plan of a Sind kiln, with which he had been provided, the centres of the arches or flues were extended from 5 to 8 feet apart, and the interior width of the kiln was made 14 instead of 12 feet. The same process of filling and firing as had been practised in the small kilns were adopted in these, but the results were unfavourable; the out-turn being nothing but second class and peela bricks; this plan was, therefore, abandoned. The dimensions of the largest Sind kiln were $150 \times 14 \times 8$.

FIFTH, on " ROORKEE FLAME KILN," vide Plan, dc. (Sheet, No. 6).
It being supposed that the last described kiln failed on account of the flues being being so far apart, and the advantages of burning by flame being evident, Mr. Finn determined to try a modification of the Sind pattern. For this purpose he removed the interior longitudinal walls from the large kiln abovementioned, and increased the height of the interior walls by 2 feet, making the kiln $150 \times 14 \times 10$. Its floor was levelled off and a tier of arched flues 3 feet wide and $5 \frac{1}{2}$ feet high was formed from side to side; on the top of these flues eight rows of bricks on edge were piled, the four under layers being rather open, the upper layers close. Every other flue only had an arch, small holes being left in the piers for the fire to communicate; each of the open flues were divided by a cross wall 1 foot thick, to prevent the wind blowing the fire through the bottom of the kiln.

The average result from six lilns, burned during the season, was 70 per cent., and the expenditure of wood was about 4,400 maunds to each lakh of kutcha bricks.

SIXTH, on " LOODIANA SYSTEM," ride Plan, \&c. (Sheet, No. 7).

Introduced by a native, who professed to have gainel great experience in brick-burning under a European soldier at Loodiana. His system differed from that of the Benares one, in lhaving two bricks in the piers of the flues instead of one, and in having one flue open and three closed, instead of firing from the whole. The two kilns filled by this man were great failures, and lis system was at once abandoned.

SEVENTH, on "ROORKEE NEW SYSTEM," ride Plans, \&c. (Sheet, No. 8).
The kilns previously described having been filled time after time without any marked inprovement in the out-turn of pukka bricks, it becane necessary to find out a mode by which better and more regular results would be ensured. The Benares system was, therefore, modified in the following manner :-

Instead of one uniform width and height of flue, the "Roorkee new system" kilns had them of various sizes, according as experience had taught that they were required. Thus, in the lower part of the kiln, where peela bricks prevailed in the Benares, the new system had flues 3 feet wide and 5 feet $6^{\prime \prime}$ high; the arch commencing on the sixth instead of on the fourth brick, which gave space for a considerable quantity more fucl. In the centre of the second tier where janior formed, the flues were reduced to $1 \frac{1}{2}$ foot in width, and on cach side of these were placed two 2 feet flues, the ticr leing completed with $2 \frac{1}{2}$ and 3 feet flues towards the sides and ends of the kiln, where in the Benares system peela bricks were found; the arches of the second tier of flucs commenced on the fifth brick throughout, and were ten bricks or 5 feet in height. In the third tier, one-and-half flues were made at each end of the kiln, 3 feet, and all the rest were $2 \frac{1}{2}$ feet wide; the arches commencing on the same hrick, and being of the same height as in the second tier. The flues of each tier were divided ly cross walls into cells of about 10 feet in length, and this was found to be a great improvement, by increasing the number of bricks in the kiln, and, consequently, decreasing the quantity of fuel ; and by regulating, in some measure, the current of wind and air through the kiln.

The superiority of kilns, filled in the manner just described, was soon apparent. A comparison between cight Euglish kilns_filled on previous plans, and eight of the same size filled in the new way, gave, for the
former, an average return from each kiln of 35,737 whole pukka bricks, or 55.4 per cent. ; whilst the latter gave 61,140 whole pukka bricks, and an average per-centage of 66.3 , showing an increase of 11 per cent. of pukka bricks, with the very great advantage of nearly twice the number of whole ones. This method was, therefore, continued throughout the remainder of the season, and the best kiln yielded a per-centage of $84 \cdot 6$ of pukka bricks on the kutcha ones piled into kiln. The quantity of wood used in these kilas was about 3,000 maunds per lakh of kutcha bricks.

In all the English kilns filled by Mr. Finn two layers of broken bricks were laid flat on the top, and over these, kiln ash was deposited in ridges at first, and spread out when the fire made its appearance at the top of the kiln, the layer of ashes being from 9 to 12 inches in depth. In firing, the flues were replenished with wood for from thirty-six to forty-eight hours after lighting, or until the fire had laid good hold of the kiln. Various methods of firing were tried, some with every other flue closed; some with one open and two closed; and others with one open and three closed flues. The system of one open and two closed appeared to act the best, as the fire passed more equally tlirough the kiln than in the others. Two flues were attended and fired by one beldar, and the kilns were watched day and night for a week after firing, and all the chasms and sinkings filled up with janior.

The wood with which these kilns were fired was dhâk, peepul, burghut, saul, \&c., but the most part was dhâk derived from the kheree forests; it was cut by servant beldars, and carted in by contractors at a rate of 9 rupees per 100 maunds. 800 carts were constantly employed on this work alone during the season under review.

The two Government Hindustani kilns yielded a return of 83.4 per cent, which was an excellent result; but the bricks were dear, for this system of burning, owing to the scarcity of the description of fuel (khak and koora) required, some of which had to be carted in from villages distant about six miles, and the carriage of fuel alone for the first kiln cost the sum of 643 rupees. Oopla, which on the Jumna canals was obtained at 2 rupees, cost at Roorkee rs. 6-8-0 per 100 maunds.

The Hindustani kilns established in neighbouring villages were also successful, haring contributed to the grand total out-turn for the season $26,50,260$ pukka bricks.

In the early part of this season the kutcha bricks were moulded upon the bare ground, and were of very bad shape, leading not only to failures in burning by the incompact way in which they piled into kiln, which admitting passages for air, flame and heat, cansed the fire to be rapidly expended without doing its proper duty; but also to extra expense in the masonry built from them, by the amount of chipping and dressing which they required before being laid in the work. To remely this, pukka terraces, or masonry platforms with even surfaces, were introduced on all the brickields upon which the bricks were moulded, and in a short time our bricks were equal to the best table-monlded bricks that could be turned out. Up to the 31 st July, however, the cost of the kutchat bricks was very ligh, having been 144 Co.'s rupees per lakh. The detail of this expenditure is introduced here, in order that comparison may be made with similar detail for future years, when the improvements made in the relative situations of the tughars and moulding terraces had reduced the price of kutcha bricks to a fair average rate.

Each moulder and his attendants, as per above account, cost per month $38 r \cdot 14 a .8 p$., and each on an average turned out 1,000 bricks per diem, or per month 31,000

Deduct for four Sundays in a month 4,000
Balance, the number of bricks made by one moulder 27,000
Then if 27,000 kutcha bricks, $12^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}$, cost 38 is. $14 a$. 8 p., 1 lakh will cost $143 \mathrm{r} s .15 a .9 p$.
It must be understood that in showing the results of each season's operations, a period extending from about the middle of October to the end of the month of June following is embraced. In the statements which are given below all the work done on the Government fields during the season is represented; the bricks from the outlying Hindustani kilns are never arailable until after the season in which they were piled into kiln has passed, hence, therefore, the $26,50,260$ pukka bricks stated in a former paragraph to have been derived from Hindustani kilns are not included in the returns, but are brought to account in the abstracts for the ensuing season.

The results of the season of 1847-48 may be described thus:-

The return from the kilns so piled, was:-

The total cost of the season's operations was $1,68,072 r s .12 a .5 p$., and, after deducting from this the value of the few bricks made for the special purposes of pillars, architraves, \&c.; and excluding altogether $32,55,285$ peela bricks which, as not being at the time required for the works, were held to be of no value, the following rates were exhibited for the bricks in ordinary use:-

1848-49.-The results of the season of 1847-48 had so fully proved the success of the "Roorkee Flame" and "Roorkee New System" kilns over all others that had been tried, that the brick burning of 1848-49 was for some time confined to these two modes, and Mr. Fim's operations were carried on steadily; the out-turn of pukka bricks increased in number, and each quarter's accounts exhibitecl a reduction in their cost. In February, 1840, Captain Weller of the Engineers visited Roorkee and spoke highly of a flame kiln which he had used in Sind. As we had already learnt the value of flame kilns-in their easy management, and freedom from broken bricks, his plan was at once tricd. The first few trials were not very successful; but in a short time, with some modifications introduced by Mr. Finn, it proved so satisfactory and regular in its results, that it was introduced to the exclusion of all others, not only in the Roorkee and Muhewar ficlds, which were remodelled for the purpose, but in the new fields which were now being established at Dhmouri and Sclimpoor. Plan and sections of this kiln are given in sleet No. 9, and the following memorandum on the method of filling and firing it, which was submitted by Mr. Finn on the 1st March, 1850, after a full year's experience had extablished its complete success, will be found of the greatest value:-

Menorandum on the Filling and Firing of Flame-Kilns.

"Interior dimensions of flame-kiln in general use at Roorkee, \&c.:-Length, 31' $6^{\prime \prime}$; breadth, 11^{\prime} above flues; height, $6^{\prime} G^{\prime \prime}$ nbove flues. Excavate to a depth of 3 feet for the floors or bottom of the kiln, giving any foundation below that depth local circumstances may require; slope away the ground in front of firing flues, so ns to give the firmmen ready access to them.
"A kiln is loaded in one day, fired in two days, cooled in four days, emptied in one day: total, 8 days. A kiln of rol. III.
the above given dimensions contains about 15,500 kutcha bricks, each brick being $12^{\prime \prime} \times 6^{\prime \prime} \times 21_{2}^{\prime \prime} ; 24$ beldars load a kiln, 18 beldars unload a kiln; these men also select the bricks into classes-first, second, and peela.
"The quantity of $d r y$ wood expended at Roorkee in firing a kiln 48 hours is 575 maunds; and the number of beldars (firemen) employed to feed the flues, 24 ; thus, 2 men to each flue- 6 to a kiln-the firemen work in spells of 21 hours, night and day; then for 48 hours' firing, 4 spells, and 6 men for each $=24$ men.
"No ashes or covering of any sort to be placed on the top of the bricks in the kiln; and when the firing of the kiln is completed, the flues should not be closed up, but left open.
"Bricks and wood are placed separately in flame-kilns, the former are packed on top of the inner longitudinal walls 12 bricks or 6 feet high, and the latter is placed in the three vaults at the bottom of the kilns. The spaces, 6 inches wide, between the longitudinal walls, are flues for the admission of the heated air upwards. The lower tier of bricks in kiln are placed about 2 inches apart, the second, third, fourth, and fifth a little closer; and from the sixth to the twelfth tier ioclusive, the brick are packed in closely. When the bricks are placed in the kiln, the vaults are filled with wood, and the firing commenced; this operation should be carried on vigorously for, at least, 24 hours, by which time, if the bricks are baked, the fire will be well up all over the top of the kiln.
"During the cold season, or when bricks are not thoroughly dry on being packed into kiln, it requires fully 48 hours to bake them.
"Firewood issued to the Roorkee kilns is charged for at the rate of 11 rupees per 100 matunds; this wood is of various sorts, but by far the greater part of it is dhâk, which is supposed to be about the very worst description that could be had for the purpose: babool, khyr, and tamarind are all good; and doubtless, of either sort, a much less quantity than we expend of dhâk would suffice to bake a kiln of bricks; but of these we have none here.
"Firing kilns on high windy days should, if possible, be avoided; for then the bricks require a longer time to bake, and the kilns seldom or never afford a good return; the bricks of the windward side invariably remain unbaked.
"The average return of pukka from kutcha bricks baked in 44 flame-kilns at Roorkce for one month was 81.7 per cent. Some of the kilns, however, yielded a return of 92.8 per cent."

At the commencement of this season (October, 1848) Hall's brick-making machines (for a description. and plans of which, see Appendix) was set up at Roorkec. Mr. Finn, and the overseer Sergeant Durrant, in immediate charge of the Roorkee brick fields, first made themselves acquainted with the working of the machine, and then taught a party of bildars the use of it. For the first three montls, owing probably to the awkwarlness of the men employed, it was constantly getting out of order, and considerable interruption to progress was the consequence; but Mr. Finn persevered, and before the close of the season, had the satisfaction of seeing it work regularly, and of counting 11,670 bricks made by it in one day-an out-turn fully equal to the best that had been obtained in England or America. These bricks, from the process the clay undergoes in its passage through the pug-mill, are beautifully tempered, and when burned are found to be very close-grained ; their only disadvantage being, that their size, $9 \frac{1^{\prime \prime}}{2} \times 4^{\prime \prime} \times 3^{\prime \prime}$, differed from that in common use on the Ganges Canal works. They were invariably louned in Hindustani kilns under the supervision of the Government establishments.

Before this machine was in full work, the men employed on the Ganges Canal brick-fields, as moulders, were the most intractable and troublesome class of people that were on the works; their combined and frequent efforts to evade the doing of a fair day's work, or to extort higher rates of pay, cansed much anxiety; every attempt to coerce a moulder, or even if fault was found with the quality or quantity of work performed by one or more of them, led to a strike of the whole body. When, however, they saw that we could turn out from the machine 11,000 bricks per day, independently of themselves, they became the most docile of our people, and after a while, they were glad to receive 6 rupees per month for a full day's work.

At first, it was atteropted to work the machine by horses, but they were found not to answer so well as bullocks, and four of these latter animals were, therefore, employed daily in cutting and mixing the clay in the pug-mill: two worked from sumrise till noon, and the other two from two p.s. till dusk.

At the close of the season, the complement of men attached to the machine for working was as follows :-

Excavating the clay and carrying it to the pug-mill cistern, an average distance of 130 ft .11 beldars.						
Supplying the cistern with water, and clearing up the drying ground				...	2	
Filling the pug-mill from the contents of the cistern	3	"
Cleaning and handing the moulds preparatory to passing them into the machine					1	"
Serving the machine with empty brick-moulds	\ldots	...		1	"
On the wheel for P ressing the mixed clay into the moulds	. ${ }^{\prime}$...		1	"
		Carried forward			19	

The following abstract of workpeople employed, number and cost of the bricks made by this machine, from its setting up to the termination of the season, may well find a place in this report, as it shows how progressively Mr. Finn increased the turn-out of bricks, and decreased their cost.

Date.	Bildars, at 4 rs. per Month.	Bullocks, at 5 a. per Diem.	Bricks made Daily.	Remarks.	Total Monthly Expenditure, and Rates of the Bricks Manufactured.
1849.					
April 1	28	\cdots	\cdots	Sunday.	
" 2	28	4	10,260		
" 3	28	4	9,075		
" 4	28	4	10,050		
" ${ }^{5}$	28	4	10,026		
, 6	28	4	9,960		
" 7	28	4	10,100		
" 8	28		,	Sunday.	
" 9	28	4	10,000	(Holidays on account of	
" 10	28	\cdots	\cdots	$\left\{\begin{array}{l}\text { Hurdwar fair, beldars }\end{array}\right.$	
" 11	…	\cdots	9,480	(allowed 1 day's pay.	
$\begin{array}{ll}\# & 12 \\ \# & 13\end{array}$	28	4	9,480 10,180		
" 13	28	4	10,180 10,030		
$\#$ $\#$ 15	28	.	10,050 \ldots	Sunday.	Sundries ... \cdots... ${ }^{\text {a }}$
\# 16	28	4	10,200		Total 146 1 3
,, 17	28	4	9,600		
, 18	28	4	10,370		Average cost per lakh ... 66140
" 19	- 28	\cdots	\cdots	Cleaning machine.	Ditto, after deducting
, 20	28	4	6,500		wages fur Sundays... 58 0 5
, 21	28	4	10,360		
" 22	28	\cdots	\ldots	Sunday.	
,, 23	28	4	10,650		
, 24	28	4	9,840		
" 25	28	4	10,620		
, 26	28	4	10,450		
" 27	28	4	10,140		
" 28	28	4	10,350		
" 29	28	\cdots	...	Sunday.	
" 30	28	4	10,100		
'Total...	786	88	218,341		
May 1	28	4	10,500		
$\because \quad 2$	28	4	10,240		
" 3	28	4	10,500		
" 4	28	4	10,300		
"	28	4	10,500		
" 6	28	\cdots		Sunday.	
" 7	28	4	10,640		
" 8	28	4	10,750		Labour 149120
" 9	28	4	10,520		Sundries 7 9 10
" 10	28	4	10,650		
, 11	28	4	10,560		Total 157510
" 12	28	4	10,700		
" 13	28	\cdots	\cdots	Sunday.	Average cost per lakh ... 5412 L
7,14 $"$, 15	28 28	4	10,680 10,680		Ditto, after deducting 4988
", 16	28	4	10,680 10,450		wages for Sundays... $\quad 49888$
, 17	28	4	10,700		
" 18	28	4	10,250		
, 19	28	4	10,550		
" 20	28	\cdots	\cdots	Sunday.	
" 21	28	4	10,460		
" 22	28	4	10,500		
" 23	28	4	10,900		

N.B.-Half-pay for a tindal, at 8 rupees per month, charged throughout.

Total number of bricks made by this machine during the whole season 976,016
At an average cost of 68 rs . 9 a. 8 p . per lakh.
Bricks made by the machine during the month of May cost, on an average, 54 rs .12 a .2 p . per lakh, and the rate of the bricks moulded by hand on the pukka terraces at Roorkee during the same month was 91 rs .0 a .10 p . per lakh; the pay of the beldars for Sundays in both cases being included; size of the lastmentioned brick (unburnt) $12 \frac{21^{\prime \prime}}{2} \times 6 \frac{1_{4}^{\prime \prime}}{} \times 2 \frac{5}{8}^{\prime \prime}$. During June, 28 beldars at 4 rupees per month, and 4 bullocks at 5 annas each, made with the machine on an average 11,046 bricks per day; and during the same period to make 11,200 terrace-moulded bricks, it required

Moulders, at	pe			men.
Beldars, at 4	"	"	39	
				men.

Two of Ainslie's brick-making machines reached the works during this season, but too late to admit of their being fairly tried.

Hindustani kilns were as usual established at outlying villages, but their out-turn not being known at the close of the season, the results are not exhibited in the general returns which follow.

The average cost of the kutcha bricks made on the Government fields was 119 Co.'s rupees per lakh, and the following table represents the details of this rate:-

As in the former table, the cost of 27,000 bricks is here represented. Then, if 27,000 cost $32 r s .2 a .8 p$., one lakh will cost 119 rs . nearly.

The number of kutcha bricks moulded on the Government fields, was, including those on hand at the close of the previous season:-

Filled into kilns	...	\ldots		...	1,60,64,468
Used in making and repairing kilns	8,92,152
Loss by rain, wastage, \&c.	\ldots	26,13,914
Stock remaining at close of scason	\ldots	53,140
Total		1,96,23,674

The return from those filled into kilns was:-

Pukka bricks	\ldots	\ldots	$1,10,07,328$ or $68 \cdot 5$	per cent. on the kutcha bricks filled into kilns.		
Peela	$"$	\ldots	(cubic feet)	$36,08,720$ or $22 \cdot 5$	$1,35,876$ or $9 \cdot 0$	$"$

The produce of the outlying Hindustani kilns was $36,92,829$ pukka bricks, making the total results of the season as follow:-

Pukka bricks	...	\ldots	\cdots	...	\ldots		1,47,00,157
Peela	\ldots	\ldots	\ldots		36,08,720
Jhama	(cubic feet)	135,876

The total cost of the season's operations was $1,49,219 r$ s. $0 a .11 p$., giving (under the same conditions as explained in last season's resumé) the following average rates for the bricks in ordinary use : -

1849-50.-The brick-making scason of 1849-50 commenced at Roorkee and Muhewrur in October, 1849. The new fields establishel during this season at Selimpoor and Dhunouri were also in active progress, the former from November, 1849, the latter from February, 1850. The whole of these fields were provided with pukka terraces for moulding the kutcha bricks upou; and the only system employed for burning the bricks was that of the flame-kiln. In April, 1850, a brick-making machine on the same plan as Hall's patent, manufactured in the Roorkee workshops, was set up at Muhewur, and was worked with equal success as that which had been brought by me from England. By the end of the season, but too late for bricks to be made from it, another similar machine, also manufactured at Roorkee, was established at Dhunouri; and the several brick-fields were now in the order in which the whole of the future operations were carried on.

Ainslie's brick-making machine, although every effort was made to render it of use, proved an entire failure on our works, and was eventually abandoned.

Hall's brick-making machine continued to keep up its character ; and the maximum out-turn in any one day during the season was $\mathbf{1 2 , 2 0 0}$.

The same course of work was gone through as described for 1848-49, and the results show a considerable improvement.

The average cost of the kutcha bricks made on the Government fields was $88 \mathrm{rs} .4 a .3 \mathrm{p}$. per lakh: the detail of this rate is represented in the following table:-

Then, if 27,000 cost 23 rs .13 a. 2 p., 1 lakh will cost 88 rs. 4 a. 3 p.
The present season exhibits the kutcha brick-making in its most favourable aspect, the above rate being the lowest ever arrived at. Mr. Finn's arrangements were now matured; the quantity of work that could be done by each individual employed was known, and the performance of it strictly insisted on; and from this period forward no variation, except in the one item of "excavating and carrying earth to tughars, \&c.,". was permitted-this item was necessarily a fluctuating one, and it was entirely dependent on the distance the earth had to be carried. The excavations for this earth were carricd on at Roorkee within a defined area, so that on the close of our operations, a large large tank or reservoir might be formed for the convenience of the town. In April, 1854, this reservoir was 1,480 feet long, 370 feet average broad, and 12 feet deep.

The number of kutcha bricks mounded on the Government fields was, including those on hand at the close of the previous season:-

Filled into kilns \ldots	\ldots	\ldots	\ldots	\ldots	\ldots	...	$1,86,48,800$
Used in repairing kilns	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	$23,34,520$
Loss by rain, wastage, \&c.	\ldots	\ldots	\ldots	\ldots	\ldots	$40,30,451$	
Total	\ldots	\ldots	\ldots	\ldots	\ldots	$2,50,13,771$	

The return from those filled into kilns was:-

Pukka bricks			1,47,83,540 or 79 per cent. on the kutcha bricks filled into kilus.			
Peela	\ldots	\cdots	32,75,200 or 18	"	"	,
Jhama ...		(cubic feet)	76,301 or 3			

The produce of the Hindustani kilns was $41,50,000$ pukka bricks, making the total results of the season as follow:-

Pukka bricks	\ldots	$1,80,33,540$						
Pcela	\ldots							
Jhama	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	(cubic feet)	$32,75,200$
76,301								

Hall's brick machine made during this season $1.5,15,095$ kutcha bricks; of which, $14,23,195$ were piled into kilns, and 91,000 were destroyed by rain. The total cost of the season's operations was $1,61,601 \mathrm{rs} .8$ a. 5 p. Giving (under the conditions before notel) the following average rates for the bricks in ordinary use :-

About 1,500 carts were constantly employed during this season in carting firewood to the several fields.
18.50-51.-The brick-fields having now been established on one fixed principle, and the same course of work being in operation throughout, it will be sufficient to cxhibit the results, noting that this season was
marked by extraordinary cold weather rains, which led to great loss in kutcha bricks, and to much interruption in progress. Nevertheless, the returns exhibit continued improvement, and the season's operations were highly satisfactory.

Hall's brick machine made $37,90,670$ kutcha bricks, of which $32,26,670$ were piled into kiln, and $5,64,000$ were destroyed by rain. The maxinum number of bricks made by this machine in any one day was, in the present season, 12,500 .

Kutcha bricks moulded on the terraces of the Government fields cost $96 r$ s. 9 a. 9 p. per lakh.
The number of kutcha bricks monlded on the Government fields was :-

Filled into kilns		2,21,21,100
Used in repairing kilns, \&c.	\ldots	\ldots	30,86,115
Destroyed by rain, \&c.	\ldots	57,44,830
		\cdots	\cdots			3,09,52,045

The return from those filled into kiln was :-

Pukka bricks		$1,89,42,100$ or $85 \cdot 6$			
Peela		$25,57,800$ or $11 \cdot 4$,	"	
Jhama	(cubic feet)	66,546 or 3	"	"	

The produce of the Hindustani kilns was $75,00,000$ of pukka bricks, making the total esults of the season as follow:-

Pukka bricks	\ldots	$2,64,42,100$						
Peela	\ldots							
Shama	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	(cubic feet)	$25,57,800$
66,546								

The total cost of the season's operations was $2,19,586 \mathrm{rs} .5 a .9 \mathrm{p}$., giving (under the conditions before explained) the following average rates for the bricks in ordinary use :-

The maximum number of carts employed in bringing firewood to the works was 1,500 per day.
1851-52.-Hall's brick-making machine turned out during this season $54,23,000$ kutcha bricks, the whole of which were piled into the Hindustani kilns in which they were baked. Its maximum rate of working was equal to 13,500 kutcha bricks per diem.

Kutcha bricks moulded on the terraces of the Government fields cost on an average 93 rs .13 a .4 p . per lakh.

The number of kutcha bricks moulded on the Government fields:-

Filled into kilns $\ldots . .$.	\ldots	\ldots	\ldots	\ldots	\ldots	$3,13,35,400$
Used in repairing kilns, \&c.	\ldots	\ldots	\ldots	\ldots	\ldots	$52,26,800$
Loss by rain, wastage, \&ic. \ldots	\ldots	\ldots	\ldots	\ldots	\ldots	$44,17,300$
Total		\ldots	\ldots	\ldots	\ldots	$4,09,79,500$

The return from those filled into kilns was :-

Pukka bricks			2,57,81,120 or			
Peela ,	...		$38.65,300$ or 13			
Jhama		(cubic feet)	37,820 or 4			

The produce from the Hindustani kilns was $93,00,000$ pukka bricks, making the total results of the season as follow:-

Pukka bricks	\ldots	$3,50,81,120$						
Peela								
Jhama	\ldots							
$38,65,300$								
				\ldots	\ldots	\ldots	\ldots	\ldots
37,820								

YOL. III.

The total cost of the season's operations was $3,05,013 r s .3 a .1 p$., giving (under the usual conditions) the following average rates for the bricks in ordinary use:-

The maximum number of carts employed per day during this season in bringing firewood to the works was 2,000 .

1852-53.-Hall's brick-making machines turned out during this season $59,43,400$ kutcha bricks, the whole of which were filled into Hindustani kilns. The maximum working of these machines was at the rate of 14,000 bricks per day each.

Kutcha bricks moulded on the terraces of the Government fields cost 90 rs. 7 a. 9 p. per lakh.
The number of kutcha bricks moulded on the Goverument fields was:-

Filled into kilns		\cdots	\cdots	-	\ldots	...	3,18,91,060
Used in repairing kilns	52,44,248
Loss by rain, \&c.	...	\cdots	54,89,912
	Total	\cdots	...	4,26,25,220

The return from those filled into kilns was:-

Pukka bricks				$2,62,43,880$ or 82			
Peela	$36,73,700$ or 12	"	"	"
Jhama	...	\ldots	...	86,037 or 6	"	"	"

The produce of the Hindustani kilns was $90,00,000$ pukka bricks, making the total for the season as follows:-

Pukka bricks	\ldots	$3,52,43,880$						
Peela	\ldots							
$36,73,700$								
Jhama	\ldots							
$\mathbf{8 6 , 0 3 7}$								

The total cost of the season's operations was $3,59,588 r s .14 a .9 p$., giving (under the usual conditions) the following average rates for the bricks in ordinary use :-

The great increase observable here in the cost of the pukka bricks is entirely owing to the enhanced price that had to be giren for the carriage of firewood, which had annually to be brought from a greater distance, as the forests nearest to our works became cleared.

1853-54.-As far as this paper is concerned, the season of 1853-54 terminates on the 31st of March, 1854; up to that date the Roorkee and Muhewar brick manufactories were most successfully workel to their utmost capabilities, owing to the increaved demand that was made upon them to meet the energetic measures which had been taken by the exccutive engincer to prepare the aqueduct works for the reception of water early in April. The Dhunouri manufactory was also steadily worked; but that at Selimpoor was closed on the 31st January, on which date a sufficient number of bricks had been prepared to complete the works in the neighbourhood.

Hall's brickmaking machines had made $22,36,500$ kutcha bricks, $21,68,500$ of which had been piled
into Hindustani kilns; the average maximum working of these machines continued at $14,000^{*}$ per day from each machine.

Kutcha bricks moulded on the terrace platforms of the Government fields cost 89 rs . 13 a . per lakh.

The number of kutcha bricks moulded up to the 31st March, 1854, was:-

Filled into kilns	...	\ldots	...	\ldots	...	2,12,96,000
Used in repairing kilns, \&c.	36,65,200
Loss by rain, wastage, \&c.	\ldots	\ldots	\ldots	3,29,880
In hand	\ldots	...	14,52,200
Total	\ldots	2,67,43,280

So far as they were known (some kilns necessarily remaining unloaded) the results of the bricks filled into kilns had been-

The Hindustani kilns contributed a further supply of $75,00,000$ pukka bricks, making the total number that had been sent to, or were available for, the works up to the termination of the period embraced by this section, as follows :-

Pukka bricks	\ldots						
Peela	2,53,80,613						
Jhama	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	(cubic feet)
$20,79,100$							
72,922							

The total cost of the operations during this period was $2,38,542 \mathrm{rs} .13 \mathrm{a} .1 \mathrm{p}$., giving (under the usual conditions) the following average rates for the bricks in ordinary use:-

The following condensed abstract of the foregoing results will exhibit the extent of the brickmaking operations in the northern division of the Ganges Canal from their commencement, in 1842, to the 31st March, 1854 :-

and a popular idea of its vastness may be given by stating that if the above number of bricks were laid endwise they would form a line upwards of 40,000 miles in length.

[^0]The memorandum appended to this paper was drawn up by Mr. Finn for another purpose than this report, but it very appropriately takes its place here, and exhibits results during the whole of the period which it embraces highly creditable to that officer's energetic management.

Memorandum of Operations in the Material Department, Northern Division Ganges Canal, drawn up by Mr. James Finn, Executive Officer of Materials.

The purport of the figured sheet which accompanies this paper is to exhibit in a succinct yet comprehensive manner a summary of my principal doings as Executive Officer of Materials at Roorkee; and I shall here endeavour further to elucidate such points as appear to me to call for remark. I shall, however, confine myself in this memorandum, as I have done in the figured statement, to the staple articles of building materials supplied to the Executive Engineer, viz., bricks, lime, and soorkee, deeming it undesirable to hazard being tedious by entering on such comparatively insignificant items as cattle, timber, and miscellaneous materials.
2. The number of pukka bricks expended on the works of the northern division since the material department has been in my hands, together with those now in store, is as follows :-

Season of	1847-48	\ldots	\ldots	...	95,70,092
"	1848-49	\ldots	\ldots	\ldots		1,60,98,194
"	1849-50...	\ldots	\ldots		2,16,71,221
"	1850-51	\ldots	2,55,93,135
"	1851-52 ...	\ldots	...	\ldots	\ldots	\ldots	...	3,38,77,271
	1852-53...				\ldots	\ldots	...	3,39,39,064
From 1st August, 1853, to ${ }_{31}$ st March, 1854					\ldots	2,99,52,861
Total				...	\ldots	\ldots		17,07,01,838

besides $2,00,68,040$ peela bricks, and $6,65,816$ cubic feet of jhama. Of the above, $16,10,94,899$ pukka bricks were of the standard size, $12^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}$, and were manufactured at an average rate of $995 \mathrm{rs}$.3 a . per lakh, including all expenses of carriage and stacking. The demands on me for this material, it will be seen, were far beyond what was originally anticipated, yet I am happy to say that on no occasion were the works stopped from the supply running out. I would invite attention to the column showing the cost of manufacture of the standard bricks. The first season's work may be regarded as experimental; after which, notwithstanding the enormous sums expended, as per margin,* on dead stock, nearly all of which has been charged off, it will be seen that up to November, 1849 , there was a steady and gradual reduction in rate, which at this period reached the minimum of 780 rupees, or with carriage, \&c., 900 rupees per lakh; and in wood kilns and under ordinary circumstances, I do not believe they would ever be cheaper at Roorkee. In May, 1852, there is again a rise in price, as might naturally be expected, owing to the greater distance which firewood had to be brought. At the commencement of operations this distance was 7 miles, latterly it has been 22 miles. The supply of fuel for my kilns has been my chief anxiety; it has cost me from 10 to 15 rupees per 100 maunds; and I have brought in and consumed the enormous quantity of $91,55,734$ maunds, clearing away in so doing from 80 to 100 square miles of jungle.
3. I may here add that the whole of the bricks made during the first season were baked in large kilns on the old "English" pattern. Towards the close of the following scason, a few experimental Sind flamekilns were tried, and with such favourable results, that ever since they have been in full use, and the " English " ones entirely discontinued.

[^1]4. The quantity of lime furnished to our works is $19,38,000$ maunds, viz. :-

Issued at an average rate of 26 rs .3 a . per 100 maunds. The established rate of this material, when I assumed charge, was 30 rupees per 100 maunds, and I was given to understand that even a higher price had been paid for it. As our work progressed and competition was engendered, I thought an opportunity offered for getting this article at a reduced rate, and to a certain extent I succeeded in the second season of our operations. In the following year, however, I procceded too far; I paid no more than 23 rs .12 a . per 100 maunds; the consequence was, that the supply fell off; contractors would not come forward, and I was reduced to the necessity of advancing the rate by 1 rs .8 a . per 100 maunds. It will be seen from the statement accompanying, that ever since November, 1850, the price of lime has remained fixed at 25 rs .4 a. per 100 maunds, and I believe this to be a fair rate both for contractors and Government.
5. The issues of soorkee annually, including stock now in hand, have been : 一

at an average of $12 r s 9 a$. per 100 maunds. The rate, when I joined, was $14 r s .12 a$; ; it has since naturally fluctuated with the cost of bricks; hence we find it reduced to $12 r s .8 a$., and then to 12 rs . per 100 maunds, and latterly it has risen to $13 r$ s. 8 a.
6. I have been very fortunate in my extensive dealings with contractors for Puzawalı made bricks, lime, and carriage of firewood. Of brick contractors I had from 40 to 50 in constant employ, about the same number of lime contractors, and sometimes as many as 400 contractors with 2,000 carts bringing firewood from the forest. Every rupee earned by my numerous contractors was paid to them in my presence, and although I have been obliged to make large advances to get them to work, and to retain them afterwards, I have not, to this date, lost one pio by the contractors for bricks and firewood; but I did lose about 150 rupees by the lime contractors, two of whom died before their contracts were completed, and they were in such poor circumstances that they left nothing but their starving families behind them.
7. In conclusion, I would advert to the large sum of money which has passed through my hands for the supply of materials for the northern division, and endeavour to show, that it has been, at least, not unprofitably expended. The sum-total of money laid out on materials, exclusive of estallishment pay and current expenses is, as per accompanying statement, $23,48,398$ rs. 4 a. 4 p., which, being spread over 78 months, gives an average monthly outlay of $30,107 \mathrm{rs} .10 \mathrm{a} .8 \mathrm{p}$. The increased charges for supervision over this outlay-I mean my own salary, that of my office cstablishment and current expenses; for the same staff of oversecrs would necessarily have been maintained if the executive and material departments had not been separated-have been, as nearly as possible, 500 rupees per mensem, or $1 \frac{2}{3}$ per cent. Now, to look at the direct saving to Government effected by reduction of rates: the average cost of bricks during my first season's work, viz., 1,244 rs. 12 a. per lakl, may lee assumed as the rate of manufacture when I took charge.

My bricks on the whole have come to 995 rs . 3 a., equivalent to a saving of 249 rs .9 a. per lalrh, or on $16,10,94,899$ bricks, $12^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}, 4,02,032 r s .7 a .4 p$. Similarly with lime: the reduction has been $30 \mathrm{rs} .-26 \mathrm{rs} .3 a .=3 \mathrm{rs} .13 \mathrm{a}$. per 100 maunds, or on the total supply $72,893 \mathrm{rs} .14 \mathrm{a}$. And in respect to soorkee, the reduction is equal to 2 rs .3 a . per 100 maunds; or on $35,31,137$ maunds it is $77,243 \mathrm{rs} .10 \mathrm{a}$. Collecting these sums, we get:-

Saving on bricks					${ }_{4,02032}^{\text {R8, }}$				A.	
					$\begin{array}{r} 4,02,002 \\ 72,893 \end{array}$	14				
Soorke		...			77,243					
								5,52,169	15	
Deduct expense of supervision for $6 \frac{1}{2}$ years, at 6,000 rupees per								39,000	0	0
Nett saring to Government								5,13,169	15	4

being 17.93 per cent.
8. I shall say nothing of the difficulty of obtaining materials in large quantities at any price, of providing carriage for the immense stocks of firewood required for my kilns, of transporting lakhs of cubic feet of lime annually; in short, of making arrangements for materials generally, on so very extended a scale as was indispensable in the northern division; but allow the simple figures given above to speak for themselves, confidently trusting that the results which have been shown in this memorandum will prove satisfactory.
(Signed) James Finn,
Executive Oficer, Northern Division Ganges Canal.

Statement or Abstract of Cash reccived to Account of Materials, and of Issues of Materials to Works, with Rates of each.

Period.	Cash advances to Exec. Offler of Materials.	Issues to Woris.									Firewood brought on Works.	Pukka Bricks $12^{\prime \prime} \times 6^{\prime \prime} \times 21^{\prime \prime}$ per Lakh.	Stone Lime per 100 Maunds.	Soorkee per 100 Maunds.
		Pukka Bricks $12^{\prime \prime} \times 6^{\prime \prime} \times 23^{\prime \prime}$	Pukka Bricks (machine) $94^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$	Pukka Bricks of Sizes.	Peela Bricks.	Jhama.	Stone Li	ime.	Soorkee					
To April $30 . .$.	1,95,398 414	60,43,090	...	2,66,960	24,46,645	11,840	83,315 87708	25	7,066 47300		6, 37.546	$\begin{array}{lll} 1,214 & 13 & 1 * \\ 1300 & 8 & 8 * \end{array}$	$\begin{array}{ccc} 29 & 9 & 7 \\ 30 & 0 \end{array}$	$\begin{array}{lll} 1410 & 9 \\ 14 & 12 \end{array}$
" July $31 .$.	1,05,000 0000	32,39,554		20,488	2, 2 , 7,398	36,858	87,708 19,475	35 15	47,300 23,543		6,57,546	1,300 1,149 8 8	$\begin{array}{lll}30 & 0 & 0 \\ 30 & 0 & 0\end{array}$	14 14 14 12
, Oct. 31 ... 1349.	52,000 00	41,84,866	...	15,080	10,39,360	94,344	19,475		23,543		...	1,149 8 8 0^{*}	$30 \quad 0$	
, Jan. $31 . .$.	1,11,200 00	53,57,615	...	5,08,012	8,86,918	22,789	1,02,717		30,604	35		1,066 1310 *	$30 \quad 0$	14120
", April $30 .$.	1,34,500 000	33,47,299			4,67,384	42,081	98,974		84,828	0		850 0 0	$30 \quad 0 \quad 0$	128
", July $31 . .$.	79,400 0 0	26,66,822	14,000	4,500	4,14,523	65,202	91,085		53,961	10	13,47,498	8000	2800	128
" Oct. $31 . .$.	14,700 0-0	37,01,300	18,800	12,140	4,23,274	50			25,926		...	8000	280	1280
$\begin{gathered} 1850 . \\ , \quad \text { Jan.: } 31 \ldots \end{gathered}$	63,200 00	52,20,651	1,02,708	...	12,54,234	33,528	22,802	221	1,05,471	23		780	2312	1200
, April 30...	1,07,000 000	72,58,166	2,64,200	...	8.63,209	45,771	65,222	15	1,79,429	10		780	23120	1200
\#, July $31 .$.	80,000 00	47,68,556	3,24,700	...	4,48,092	22,191	1,26,371	25	1,08,040	25	14,98,200	780	23120	120
," Oct. $31 .$.	+4,500 00	36,94,683	1,80,052	...	2,46,160	50			50,361	20		780	23120	1200
$\begin{gathered} 1851 . \\ \text { „ Jan. } 31 . . . \end{gathered}$	75,000 000	67,91,037	2,30,800	150	6,80,734	700	43,365		57,324	30	...	780	254	120
, April $30 . .$.	1,08,000 000	65,48,520	2,03,2:50	...	7,70,349	29,864	1,14,875	0	1,56,163	35		780	254	1200
\% July 31...	75,00000	75,74,328	3,70,315		6,91,590	35,932	1,10,544	30	1,78,901	25	12,41,755	780	254	1200
", Oct. $31 .$.	37,000 0 0	51,22,708	7,22,260	500	3,06,850	...	1,532	20	68,305	5	...	780	254	1200
$\text { , Jan. } 31 \text {... }$	1,11,000 000	96,22,391	2,34,300	200	10,65,216	22,546	91,712	0	2,78,555	15		780	254	120
, April $30 .$.	1,65,000 000	1,06,41,669	6,42,713		14,69,066		1,03,634	30	1,26,910	35		780	254	1200
, July $31 .$.	1,07,000 000	63,94,170	4,88,900	7,460	10,67,070	15,274	1,17,132	27t	1,45,276	10	22,81,507	8800	254	1200
, Oct. $31 .$.	35,500 0 0	57,38,834	8,93,435	30,900	12,07,532	7,674			41,261	20	...	880	254	1200
$\begin{gathered} \text { 1853. } \\ \text {, Jan. } 31 . . . \end{gathered}$	75,000 0 0	59,26,946	5,28,760	1,74,459	11,66,102	10,742	54,217	10	2,00,578	0	...	880 0	254	1200
", April $30 .$.	1,30,000 000	1,11,53,925	4,64,350	60,668	8,44,760	49,134	1,19,353	5	2,38,637	0		950	254	1200
\% July $31 . .$.	1,05,000 00	$85.62,097$	3,05,800	98,890	5,97,360	18,487	1,28,470	23	1,91,792	5	12,29,228	950 0 0	254	1200
, Oct. $31 . .$.	83,000 0 0	58,18,315	5,93,250	1,18,011	1,95,120	40,039	18,141	271	1,43,644	15		950 0 0	2540	$\begin{array}{llll}13 & 8 & 0\end{array}$
$\begin{gathered} 1854 . \\ \text { " Jan. } 31 . . \\ \text { Mar. } 31 . . . \end{gathered}$	$\begin{array}{llll}1,55,000 & 0 & 0 \\ 1,00,000 & 0 & 0\end{array}$	$\begin{array}{r} 1,30,38,573 \\ 56,78,784 \end{array}$	$8,75,280$ $3,11,150$	$2,09,598$ $\mathbf{3 , 0 9 , 9 0 0}$	$10,84,590$ $2,14,504$	3,875 56,845	2,33,531 $1,02,775$	273	$3,73,792$ $4,38,459$	35		$\begin{array}{ll}950 \\ 950 & 0\end{array}$	$\begin{array}{lll}25 & 4 & 0 \\ 25 & 4 & 0\end{array}$	$\begin{array}{lll}13 & 8 & 0 \\ 13 & 8 & 0\end{array}$
" Mar. $31 . .$.	1,00,000 000		3,11,150	3,09,900	2,14,504	56,845	1,02,775	171	4,38,459	35	9,00,000	950	254	1380
Total In store about	23,48,398 414	$\begin{array}{r} 15,80,94,899 \\ 30,00,000 \end{array}$	77,69,023	18,37,916	2,00,68,040	6,65,816	19,38,200	0	$\begin{array}{r} 33,56,137 \\ 1,75,000 \end{array}$	$\begin{aligned} & 5 \\ & 0 \end{aligned}$	91,55,734		-	
Grand Total	23,48,398 44	16,10,94,899	77,69,023	18,37,916	2,00,68,040	6,65,816	19,38,200		35,31,137	5	91,55,734	-	-	-

* These four ratce include carriage and stacking. In February, 1849, I was relieved of the provision of carriage for bricks, but Captain Goodwin has ascertained from averages struck on large quantities, that $120 r s .1 \nmid a .5 p$. cover all expenses of carriage, \&c. If, therefore, 120 rs. be added to the succeeding rates, the total cost of bricks to the works will be obtained.
(Signed) James Finn, Executive Officer, Northern Division Ganges Canal.

APPENDIX B.

Report of a Committee assembled by General Orders Commander-in-Chief, dated 16 th

 September, 1845, under Instructions from the Right Honourable the Governon-General of India in Council.Extract from General Orders.

"Under instructions from the Right Honourable the Governor-General of India in Council, the undermentioned officers are directed to form themselves into a Committee, to assemble at such places and on such dates as may be fixed by the President, for the purpose of reporting on the causes of the unhealthiness which has existed at Kurnaul and other portions of the country along the line of the Delhi Canal; the Committee will also report whether an injurious effect on the health of the people of the Dooab is or is not likely to be produced by the contemplated Ganges Canal :President : Major W. E. Baker, Eugineers; Members : Surgeon T. E: Dempster, Horse Artillery ; Lieut. H. Yule, Engineers."

REPORT.

Roorkee, 3rel March, 1847.
The conduct of the investigation intrusted to our Committec, and detailed in the annexed General Order, involved the necessity of personally examining the districts irrigated by the existing canals, and such other localities as seemed best suited for a fair comparison with them. For this purpose, the Committee met at Kurnaul on the 30th November, 1845, and procceding southward had made considerable progress in the examinatiou of the irrigated districts west of the Jumna, when they were summoned to military duty with the army of the Sutlej. On the 1st of November, 1846, the inquiry was resumed, and has continued without further interruption.

2nd. The route followed by our Committee may be traced on the accompanying sketcl map. It was prescribed in some measure by the official engagements of Major Baker, whose inspection of the canals, \&c. was necessarily performed in conjunction with his duties as a member of the Committee. It will be scen, that we have examined the irrigated and unirrigated districts on both banks of the Jumna, that we have visited the Najufghur jheels, and have followed the proposed course of the Ganges Canal for 83 miles, viz., from Hurdwar to the latitude of Meerut. In the course of this inquiry, we have travelled about 1,400 miles. We have visited more than 300 inhabited localitics, and have personally examined upwards of 12,000 individuals of all ages.

3rd. It was suggested by our medical member, and will be generally admitted, that a fair comparison of the sanitary condition of different districts must be founded on observations taken within a very brief period of each other, and under circumstances as nearly as possible similar. The observations taken in 1845 were, therefore, useless for our present purpose, and the necessity of completing our inquiry within a period limited to about three months, compelled us to restrict our observations to the bodily condition of the people and to those more obvious circumstances which all modern authority concurs in pronouncing to be those most concerned in the production of disease.

4th. In the commencement of our investigation, we had hoped to derive much assistance from the results of inquirics conducted by our own native agents, and at our instance by the establishments of the revenue and canal departments. We have now before us an inmense mass of reports obtained from such sources, but they are in general so vague and unsatisfactory, and are so little corroborated by our own personal observations, that we were unwilling to incur the labour involved in arranging and digesting then, with so little prospect of ultimately oltaining trustworthy results.

5th. Our principal olject was to ascertain what relation subsisted between certain plysical conditions

London Smith Blatere Crs Combinil
of the different districts, and the liability of their inhabitants to miasmatic fevers. The former could be noted with some degree of certainty; but in the absence of official medical statistics, and with frequent reason to doubt the accuracy of oral testimony, although collected by ourselves, we could not obtain even an approximation to a fair comparison of the past and present sanitary condition of the inhabitants of different localities. In this difficulty, it was suggested by our medical member, that the condition of the spleen in any number of individuals would be a fair test of the probable frequency and degree in which they had suffered from malarions influences. Having satisfied ourselves of the propriety of this test, and finding it easy of application, we determined to adopt it, and have based on the results so obtained the most important of the conclusions at which we have arrived. In the Appendices B and C, will be found a memoir by Mr. Dempster, stating the medical grounds for the adoption of this test, and describing the method followed in applying it.

6th. The present season, in which our observations were taken, has been a generally healthy one, and was preceded by a season scarcely less favourable. It is also separated by eight or nine years of good harvests from a season of drought, a circumstance decidedly in favour of unirrigating villages which have had abundant time to recover from any sickness that might have been entailed upon them by the unmitigated hardships of famine.

7th. Amongst the instructions furnished for our guidance from the Adjutant-General's office, we find a series of questions, on each of which his Honour the Lieutenant-Governor, North-Western Provinces, has called for our recorded opinion. These questions embrace nearly all the important points of our investigation, the results of which cannot perhaps be shown in a more intelligible form than that of consecutive answers to his Honour's interrogatories, as follows :-

8th.-Finst. How far is the unhealthiness which has prevailed of late years at Kurnaul, Delhi, Hansi, Hissar; and Rohtuck, and in the villages irrigated from the canal, attributable to the existence of the canal, and to irrigation from it?

Reply I.-We have obtained satisfactory proof that an extensive epidemic influence, in whatever it may have consisted, or however produced, undoubtedly pervaded a large portion of the North-Western Provinces of late years, and especially during and after the rainy season of 1843. To this we would partly attribute the sickness which occurred in the canal irrigated districts, where, however, it is also certain, that the disease was generally, though not universally, more prevalent and severe than in other situations.

9th.-SEcond. Did similar unhealthiness prevail at the same time in other parts of the country not irrigated fron the canal and beyond the reach of its infuence? If so, to what cause is that unhealthiness attributable? Was the type of disease in the two cases the same?

Reply II. - Nearly all places within the North-Western Provinces also suffered from fever at the same time, and in a degree greater than usual.* We have, moreover, every reason to believe, that in certain situations neither irrigated from the canal nor within reach of its influence (as at Kythul, in the vicinity of the Nujufghur jheels, and in the khadir of the Jumna, \&c.), fevers prevailed to an extent and with an intensity, as great as in the worst of the canal villages. The season of the year at which the disease appeared, its symptoms, progress, and consequences, would mark it to have been everywhere of the same type, viz., the endemic (remittent and intermittent) of the rainy season, but everywhere, and especially in naturally malarious localities, greatly aggravated by the constitution or peculiarity of the season.

10th.-Tmind. If yom consider the canals to have been the cause of unhealthiness along their course, have you any grounds for thinking such to be the uncroidabie result of canal irrigation, or is it attributable to other causes, such as intercepted drainage, flooring from canal, peculiarity of the soil inrigated, foc.?

Reply III.-By far the greater part of the evils we have observed have not been the necessary and unavoidable results of canal irrigation. In all situations where mischief was prominently marked, the natural drainage of the country had been checked or interfered with, stiff and retentive soils saturated with water, and natural disadvantages of site enkanced by excess of moisture.

* See Appendir D.
vol. III.

11th.-Fourth. Can you suggest any means whercly the agricultural benefit of canal irrigation may be continued to the country at large while military cantonments or large towns may be saved from the risk of unhealthiness?

> 12th.-FIFTH. Can you suggest any change in the lodging or mode of life of the agricultural population within reach of canal irrigation which would render then less liable than at present to amy unhealthy infuence occasioned by the canals?
balus ill salubrity of village sites, viz., to stop irrigation within 200 yards round might be done to improve the villages, and to plant a double row of trees round the unirrigated space; to deepen all good village tanks, and to keep them full of water all the year round; to drain all shallow pools in or about villages, or to convert them into proper reservoirs of water ; and, wherever it may be possible, to improve the drainage of village sites. It would be no hardship on a new canal to make such works an invariable condition of obtaining water for irrigation. Cleanliness is of much, though not of such vital importance as the measures above recommended; but we fear no rules on this subject could be generally enforced.

13th.-Sixth. Looking to the circumstances of the Eastern Jumna or Saharunpoor Canal, do you find that the effect of the canal irrigation on the health of the inhabitants has been the same there as on the West Jumna or Delhi Canal? If not, how do you account for this difference in effect?

Reply IV.-The effects of canal irrigation appear to be remarkably local, almost strictly so; three miles would probably be a safe distance; but if irrigation were prohibited within a circle of five miles radius round a large military station, its salubrity would not in our opinion be affected.
Reply V.—We feel doubtful whether any suggestion proceeding from authority, as to mode of life, exposure, food, clothing and construction of houses, would be adopted and voluntarily practised by the agricultural population. The best and most efficient prophylactics of this class, naturally come with competence and ease, but much might be done to improve the

Reply VI.-The Eastern Jumna Canal furnishes examples of some of the best and worst results of canal irrigation. In the north and south divisions, where the soil is light, the drainage perfect, and irrigation carried on chiefly by "Rajbuhas," we perceive all the blessings and scarcely any of the evils of a canal. But in the centre division, where the drainage of the country has been greatly obstructed, and the soil is generally more stiff and clayey, the effect on the health of the inhabitants has been the same in kind, and nearly in degree, as in the objectionable portions of the Delhi canals.

14th.-Seventr. Do you suppose that the contemplated Ganges Canal will or will not exercise an injurious effect on the health of the people of the Doab, over the whole of which it is intended to extend its influence? If you are of opinion that it will, can you propose any remedy or palliatives which will not involve the entire abandonment of the undertaking?

Reply VII.-In the course of our inquiries on the existing canals, we have found salubrity to depend in a great measure on the nature of the soil and the efficiency of the surface drainage. In the districts which it is proposed to irrigate, the obvious geographical features of the country enable us to pronounce with some confidence, that an efficient dranage, if not everywhere existing, is at least generally attainable. On the proposed line of the canal from Roorkee to Meerut, we observed the soil to be light and friable; but without an extended examination, we cannot pronounce what proportion of the remaining districts of the Doab is characterized by similar soil. It can scarcely be hoped, however, that in the whole length of the proposed canal and its branches, some localities will not be met with, naturally and irremediably unfavourable to irrigation, and in which disease analogous to that found on the existing canals may not be expected to develop itself. On the other band, if attention to drainage be made an absolute condition of participation in the benefits of the canal, an improvement rather than a deterioration of the general salubrity, may, in many instances, follow the introduction of canal irrigation. On the whole, we consider ourselves warranted in anticipating, on the Ganges Canal, a far less amount of contingent evil than has been experienced on those of the Jumna, which were originally constructed without reference to many important points which have been especially kept in view in projecting the present work. And more especially in drawing inferences from results on the Delhi Canal, great allowances should be made for the natural disadvantages of the country through which it flows - when compared with the Doab generally. It is a remarkable feature of the "bangur" land bordering the right bank of the Jumna, that its drainage flows from, instead of towards, that
river. The slope of the country, which is to the south-west, amounts to 1 foot or 1 foot 6 inches per mile, and is not sufficient to prevent even a slight obstruction from interfering with the flow of water. In subordination to the general slope, there are minor undulations, the excess of slope in one part being compensated by the absolute want of it in another. In such cases, the drainage of the higher lands collects in the lower, and from the latter there is no efficient escape. This is exemplified on a large scale in the Nujufghur jheels, and to a less degree in many other localities. The Doab, on the other hand, is intersected by deep depressions, sometimes with the character of valleys, sometimes of ravines. These, except in a few instances, receive and rapidly carry off the surplus water of the country.

15th. With reference to the latter part of this question, we have prepared a memorandum of measures connected with the execution of the Ganges Canal, which we would strongly urge upon the attention of Government. With the details of these measures, which are of a technical nature, we have not encumbered this report, but they will be found in Appendix F.

16th. In addition to the above replies, it is proper to state our opinion of the effects produced by canals on the population of the irrigated districts, as regards their enjoyment of life and physical efficiency as agricultural labourers. During the cold season of 1846-47 (a healthy year), no obvious bad effects were perceptible in the adult population. The men generally looked healthy, happy, and thriving. The autumn crops were all gathered in, and the spring crops sown. The villagers on the Western Jumna canals are better clothed and housed, and have more appearance of wealth and comfort than those off the canal. In a few of the worst localities the aspect of the children was decidedly sickly; they were puny and pot-bellied. It must further be borne in mind, that our obscrvations were made at a favourable season, and that we not only refiained from calling for the sick, but systematically discouraged their being brought forwaid.

17th. In our examination of districts unconnected with the canals, we have included some in which well irrigation is habitually practised, and in which we have found the population in a slight degree more subject to malarious diseases than in the totally unirrigated districts. We would, however, hesitate in attributing this difference to the mere circumstance of irrigation. It may perhaps be as justly ascribed to the abundance of springs and limited depth of wells, which are essential conditions of extensive well irrigation.

18th. In endeavouring to account for the observed difference of salubrity between well and canal irrigation, we beg to point out some material differences in the circumstances under which they are severally practised. Well irrigation is chiefly resorted to during the healthy season of the year; the water obtained with labour is used with economy, and the natural moisture of the soil is not increased by the water being transferred from a lower stratum to the surface. Canal irrigation, on the other hand, is practised throughout the year, being applied even during the rainy season to the cultivation of rice. The water being more easily obtained, is more likely to be used in excess, and such portion of it as may be absorbed by the soil increases by so much its natural humidity. It may be added that foreign alluvial matter is more likely to be held in suspension in canal water than in that obtained from wells.

19th. The pecuniary advantages of canal irrigation, both to Government and to the farmer, are, we believe, fully recognized, and are so well understood by the cultivators themselves that they would willingly take their chance of the contingent evils of irrigation, in order to secure its benefits. Of this we saw abundant proof in the course of our investigation. It would, however, have been an important test of the national value of canal irrigation conld we have accurately ascertained its effects on the density of the population, and whether the augmented capacity of the soil for supporting life compensated for the increased activity of influences inimical to its duration. In the hope of determining this question we obtained from the revenue authorities ccetain returns, of which an abstract will be found in Appendix G., and which show a marked difference in favour of irrigated lands. It is, however, to be regretted that the census forming the basis of these returns was taken several years ago, and may therefore not be strictly applicable to the existing condition of the country.

20th. In the foregoing paragraphs we have confined ourselves to general conclusions, fearing lest, by entering on the consideration of local details, we should extend our report to an inconvenient length. But our attention having been particularly called to the station of Kurnaul, we beg to offer a few remarks showing briefly the causes to which we attribute the late sickness at that station, and the extent to which they may be removed or palliated.

21st. The insalubrity of Kurnaul has been ascribed to various causes: To the prevalence of an epidemic influence of late years over the North-Western Provinces-to its proximity to the Jumna khadir on the east, and to the unhealthy flats of Kythul on the west-to the stiff and retentive nature of its soil-to the swamps bordering on the canal-to the extent of rice cultivation-and to the naturally imperfect drainage, being still further obstructed by the canal embankments. Each of these causes, and especially the first named, have, in our opinion, contributed to the unhealthiness of Kurnaul. Some of them are obviously irremediable, but we are satisfied of the practicability of reclaiming the canal swamps, of improving the surface drainage by carrying off the superfluous water under the canal by two tunnels to the Jumna, and of prohibiting irrigation within two miles of the cantonment pillars. We have no doubt that the adoption of such measures would be attended with beneficial results; but believing that the level of the springs has been permanently altered, and the under strata of the soil saturated with moisture, we cannot confidently prognosticate that they would ensure the complete restoration of salubrity.

22nd. In the foregoing paragraphs, we have confined ourselves to general conclusions, purposely omitting the chain of induction by which they bave been formed on the observed facts, as recorded in the figured abstracts in the Appendix E. A full discussion of the complicated considerations which have influenced our opinions would have extended this report to an undue length, and might probably have hindered rather than facilitated the formation of a correct judgment on the important question at issue. The facts, however, are recorded for reference, and will be found, on careful examination, to support our opinions.

23rd. In conclusion, we beg to record our obligations to the Honourable the Lieutenant-Governor, North-Western Provinces, for the assistance he has afforded us, both privately and officially, in the prosecution of our inquiries. On his requisition we have received from the Madras Government a report on a remarkable epidemic that pervaded the southern districts of that Presidency in 1809, 1810, and 1811, an abstract of which will be found in Appendix H., and at his suggestion we have obtained the appended reports from Drs. Kier and Collyer, showing that tank irrigation, as practised in certain districts of Rajpootana, is consistent with a high degree of salubrity. These documents possess much interest with reference to the subject of our inquiry, and have bad their due influence on our general conclusions.
(Signed) W. E. BAKER, Major, Engineers, President.
(Signed) T. E. DEMPSTER, Surgeon, 1 st Brigade Horse Artillery, Member of Committee.

I fully concur in the substance of this report; but as a change in my ordinary duties, since I was appointed a member of this committee, has prevented my taking any active share in its proceedings, my signature here is merely formal.
(Signed) H. YULE, Lieutenant, Engineers, Member of Committee.

Appendix A.

I would willingly have confined myself strictly to the facts before our Committee, did I not consider it necessary, in order that these very facts should have due weight and consideration, first, fully to meet an argument often advanced by intelligent persons interested in canal irrigation, and believed by them so unanswerable, as alone to prove the doctrine of malaria a mere fiction of medical writers, and to render all further inquiry unnecessary, viz., that some marshes can be pointed out which do not cause fevers to any extraordinary extent; and some perfectly dry localities, where fevers of a very malignant nature abound.

That certain local peculiarities are generally connected, as cause and effect, with certain diseases of the human body, is no hypothesis of any set of medical speculators, but a belief which has forced itself on the conviction of mankind in various ages and countries. What those conditions are which are essential to the production of endemic disease, and what are accidentally associated with them, how the poison is evolved, and what are its sensible properties and chemical composition, have indeed furnished ample grounds for medical speculation and controversy; but the general proposition itself is as fair and legitimate an induction from observed facts as any within the whole range of science.

Exceptions do not confirm a rule, but neither do they overturn a fair induction. They only show that our knowledge is incomplete, and the whole law of the case not fully understood. If, in the exact sciences, residual phenomena are constantly occurring ; something happening which was unlooked for; something expected which does not take place; how much more may they be anticipated in such a science as medicine, where the sources of error are at once so numerous and perplexing ?

Mankind, not physicians alone, have agreed that typhus fever is a highly contagious disease. Suppose (what would not be difficult) that 1 collect a dozen authentic cases of persons who have freely exposed themselves to this contagion, and who, notwithstanding, entirely escaped the disease; am I therefore to shut my eyes to the thousands of instances in which the complaint was communicated under like circumstances, and to reject the whole doctrine of contagion as untenable? Surely this would be generally condemned as a dangerous and inexcusable error ! The human race have, at least, as deep a concern in the laws of malaria as in those of contagion.

It is a remarkable and most important fact, that the diseases believed to arise from malaria are, beyond all comparison, more prevalent during and immediately after the periodical rains in India than at any other season of the year; and that this is precisely the time when the conditions everywhere alleged to be necessary to the production of that poison, are also, beyond all comparison, most abundant. At some places there may be more, and at othets less; in some years more, and in others less; but the truth of the general remark may be verified, in this country, at all places, and in all years.

When we remember the feeble affinities which hold together the constituents of vegetable matter, the numerous and totally dissimilar combinations into which they may enter, and the seemingly trifling accidental circumstances which may determine the nature of the new compound, it is not unreasonable to believe that a something capable of causing human disease may be evolved during the decomposition of such substances, under the action of heat, moisture, and electricity; or to conceive, that unappreciable, or at least unnoticed modifications of these conditions, or of the chemical state of neighbouring bodies, may alter the nature of the expected product, and obstruct the formation of the poison when most confidently looked for. For instance, we may make all the usual arrangements for vinous fermentation; an unexpected and unobserved change takes place in the temperature or electric condition of the atmosphere, and vinegar, not wine, is the result. Is malaria alone to be a constant and unvarying product of such complex operations, even though all the ordinary conditions are apparently present?

Again, if we admit that a certain class of fevers arise from malaria, does it necessarily follow that all endemic fevers must originate in the same cause, or that all malaria is necessarily one and the same? Or who has demonstrated that malaria, like carbonic acid gas (an aëriform fluid, to which in some points it bears a striking analogy), may not be evolved under several and very different apparent conditions?

All our previous knowledge and experience would lead us to suspect some mischief from irrigating canals in such a climate as that of India, especially, if not expressly constructed so as to preserve the drainage of the country, and effectually to control the immoderate use of the water; and all I contend for is, that the question be tried and decided by the facts strictly bearing on the case before us, and not by a few exceptions, however striking or inexplicable, found in other distant situations or countries.
(Signed) T. E. Dempsten, Surgeon, 1st Brigade, Horse Artillery, Member of Committee.

Appendix B.

Tue first indispensable step in the present inquiry was to obtain some certain mode of determining the relative salubrity of different districts irrigated by the canals, irrigated by wells, or altogether unirrigated. In most European countries at the present day this would have been easy enough, by the mere comparison of the known medical statistics of the several localities under examination; hut in India the difficulties were at first sight almost insurmountable. Here we had no record of diseases, births, deaths, and population to which we could refer. A native's account of the healthiness of his own town or village, even for one season, is the loosest and most vague of statements, and if employed to collect
positive data, his written report is not a whit more to be depended on. The aspect of the people is always a matter liable to error and difference of opinion; and the important subject of longevity cannot even be approached, for no native knows his own age correctly, least of all those advanced in years. The records of military hospitals were good and valuable data as far as they went ; but they applied only to a few widely distant points, and referred to a class of subjects, differing in all important particulars from the native inhabitants of the towns or the agricultural population of the country.

In this difficulty, it occurred to me that the inhabitants of malarious countries, but especially the native inhabitants of unhealthy districts in India, often carry in their own persons a record of past suffering, which can at all times be easily read, and which no one can either falsify or suppress. This is enlargement of the spleen, a disease to which the native of India is peculiarly liable, and which, if not the invariable consequence of miasmatic fever, is so constantly associnted with it, that the one may (on the large scale) be safely taken as the measure of the other, or at least of that malaria from which both unquestionably spring. But as this is a test which has never before (to my knowledge) been used for the same purpose, and as many of our conclusions are based on the results with which it has furnished us, I trust I shall be permitted to enter somewhat fully into the subject.

There is no fact more generally known or unhesitatingly admitted by medical men, than that disease of the spleen is one of the most frequent consequences of malarious fevers. To enumerate all the authorities on this point, would be to quote most of the respectable writers on these subjects; but that Government may appreciate the value of the test I chiefly depend on for the purpose of determining the comparative intensity of malaria in different localities, it will be proper to cite a few passages from two recent and well-known works, by authors, respectively, of European and Indian experience :-
"In moist countries, whether warm or temperate, they (diseases of the spleen) are endemic, as in Italy, Holland, South America, and some parts of India; in fact, wherever malaria exists."
"The most frequent causes of enlarged spleen are ague and remittent fever."-Cyclopadia of Practical Medicine.
"The most part of the cases of vascular enlargement of the spleen in this country (Bengal) follow intermittent and remittent fevers, and tumid spleen may be stated as the most invariable consequence of acute and debilitating disease among children of weak constitutions in Bengal.
"The assemblage of constitutional symptoms described in the foregoing pages constitntes the endemic cachexia of those tropical countries that are subject to paludal exhalations; the enlargement of the spleen is the most frequent attendant on that cachexia; and its increase or subsidence generally corresponds with the unfavourable or favourable changes which are taking place in the constitution.
"Disease of the spleen is much more frequent in those years in which the most obstinate, fatal, and protracted remittents prevail. . - . The history of the fevers of St. Domingo and of Minorca by Jackson and Cleghorn shows how frequently disease of the spleen is connected with the autumnal fevers of these countries. But great beat is not essential to the production of that disease. It is the autumnal endemic of Holland, of the low parts of Hungary, of the marshes of Lombardy; and it is by no means rare in the fens and marshes of England. In fact, enlargement of the spleen is frequent wherever internnittent and remittent fevers prevail."-Twining's Diseases of Bengal.

Such passages might be multiplied to a great extent; but the above will, I hope, suffice to establish the value of this kind of evidence, as a probable measure of the existence and intensity of malaria in any particular situation.

I may here remark that Ague cake, the name by which enlarged spleen is commonly known to the country people in the fenny districts of England, is a happy translation of Tup tillee,* the words used by the up-country Indian peasants to express the same disease.

Although the intimate connection between malarious fevers, and organic disease of the spleen is established beyond a doubt, it never was supposed that these diseases bear an exact proportion to each other, or that the number of enlarged spleens in any particular situation, should correspond precisely with the number of attacks of fever suffered by its inhabitants. Many fevers occur (epecially if the attacks have been slight and not often repeated) without being followed by enlargement of the spleen; and many tumid or slightly inflamed spleens become natural in size and atructure, soon after the fever has passed off. On the other hand, the spleen may become enlarged from other causes, and in persons who have had no distinctly developed paroxysm of fever, although living in a malarious locality. Such cases, however, are, according to my experience, comparatively very rare.

When I first began to apply this test, I was not aware of its full value. I did not then know the extraordinary susceptibility of the natives, especially the native children of these provinces, to disease of the spleen; nor could I, before trial, have anticipated the facility with which it points out the relative salubrity of different situations, and at once detects unhealthy localities, which could not otherwise be discovered without the experience and observation of several seasons.

It must not, however, be supposed that this disense exists everywhere to a considerable extent, among the inhabitants of the North-Western Provinces. Places in close proximity, but in otherwise different local circumstances, exhibit the most wonderful differences in this respect; and in some extensive tracts of country, the complaint is scarcely to be met with. On the other hand, it is important to guard against exaggerated notions of the physical condition of the inhabitants of certain situations where so large a proportion are afflicted with this description of organic discase.

Enlargement of the spleen is the least formidable of all organic diseases of the viscera; and is chiefly important as a aymbol of another complaint, which generally has preceded, and may come after it. The lesser varieties (mariked

* Literally, fever spleen.
in the figure 0 . and S.), and which also form the great mass of the cases registered, may consist with every outward appearance of health and vigour. In most places where the disease is common, some strikingly healthy-looking men and children were found with decided enlargement of the spleen. But the larger varieties (M. L. VL.), of which but a comparatively small number are recorded, were usually accompanied with a sickly (cachectic) aspect.

Other diseases besides fever arise from malaria, and other consequences than spleen follow severe and protractesl attacks of fever; but most of these can be effectually concealed, and none can be detected with such ease and certainty as enlargement of the spleen. Indeed, without this test, our whole inquiry must have ended in vague and unsatisfactory conjecture, and without a single fact collected among the agricultural population on which we could depend.

I have no wish to exaggerate the true and legitimate value of the spleen test, nor do I venture to assert that it wil indicate the presence of the remote causes of all fevers, or even of all pure endemic diseases of this class. There may be different kinds of malaria, giving rise to fevers of different types, and having different complications and consequences; or common continued and typhoid fevers may become mized up with, and modified by, fevers of local origin. All these are worthy subjects of future inquiry. But from what I have lately witnessed, I am fully persuaded, that it will be found a true and faithful comparative measure of marsh malaria in its extended sense; and with that alone, have canals and canal irrigation any proper connection.

It was not, however, until after we had examined the cantonment of Meerut, that my own faith in the practical utility of the spleen test was fully established. Hitherto, spleen disease had borne some distinct relation to the nearness of water to the surface, and in a few instances where water was very close, we had found the almost incredible number of about 70 per cent. of the inhabitants with enlarged spleens. Was the disease then caused by moisture alone, and not always connected with marsh fevers? Meerut seemed well calculated to verify or disprove the received opinion; for in it we had a known healthy locality, with water only about 12 feet from the surface.

Four separate observations were made in different parts of that large station, and out of 160 native residents examined, only three cases of spleen were found; none above average size.

The city of Delhi appears, at first sight, an instance in which the test failed; but on careful examination, I think it will only be found to furnish a striking confirmation of its general accuracy. The medical topography of the city, civil station, and military cantonment of Delhi, is an extremely complicated subject, and involves a great variety of important considerations, but I need only briefly notice in this place the following particulars:

Within the walls, and especially in the most dense and crowled quarters of the city, there were comparatively few indications of pure malarious disease. This accords with what has often been remarked in other countries, viz., That the high walls, and narrow crowded smoky streets of large cities, are frequently a safeguard against marsh miasma, although other causes of disease may abound in such situations.

In the cantonment bazar, and suburbs outside the walls, a considerable amount of spleen disease was found. But when we proceeded to examine the villages situated on the verge of the low moist " khadir" land, immediately in front of the old sapper lines (a position now abandoned in consequence of its extreme insalubrity) the test at once pointed out malaria in its highest intensity.
(Signed) T. E. Dempster, Surgeon, 1 st Brigade Horse Artillery, Member of Committee.

Appendix C.

Particular Account of the Manner of Conducting the Medical Examinations.

I_{T} is for many reasons of great importance, that I should particularly describe the manner in which the spleen examinations have been conducted.

At each place twenty children and twenty male adults were selected, our chief care being, to take a fair sample, not of the sick, but of the "going about" population of the town or village under inspection. The avowedly diseased were discouraged from coming forward, and when brought were rejected, unless there were not others sufficient to make up the required number. We took subjects from all castes, and, wheuever it was practicable, examined a certain number of the agricultural labourers found in the adjoining fields, before entering the village, where our numbers were completed from other classes. Each adult was asked his class, if he had had fever this year, last year, or the year before last. The children were only questioned as to caste. Major Baker generally pointed out the subjects. I conducted the medical examination, and Major Baker entered the result in his note-book.

As the great object was to make use of an unequivocal, but easily applied test, no case was ever registered as " spleen," unless I had so distinctly felt the enlarged organ that it could not be confounded with any other disease. When the abdomen was natural and the muscles soft and yielding, a satisfactory examination was generally obtained in the erect position; but if the belly was rigid, and the region of the spleen tumid, but not clearly defined, the subject was put flat on his back, with the knees bent and raised. If an enlarged spleen was not discovered after a moderately careful examination so conducted, the person was registered as friee from the disease. Sometimes, though rarely, really doubtful cases were met with, which could not at once be pronounced upon; these were put aside, and others examined in their stead.

It will be obvious to medical men, that if all our subjects had been examined in a variety of postures, and in various states of the stomach and bowels, several cases of spleen would have been detected, which necessarily escaped
my notice. But then this test would no longer have been an easily applied one, besides occupying a far longer time than we could afford to bestow on each village. The disease is not only so common, but in general so easily detected after a little practice, that we could afford to sink all cases not easily found, and as precisely the same mode of examination vas followed everywhere, it everywhere furnished a fair scale of comparison.

One-half of the subjects selected for examination, was in all practicable cases composed of children under the age of puberty, first, because I believed young persons to be more liable to enlargement of the spleen than adults, and, secondly, because the disease, when present, is in them more easily and certainly detected. For both these reasons, I considered children to be the more delicate test of malaria. The results amply confirm this opinion.

As the size to which the spleen attains is a very important feature of the disease, and most probably indicative of the intensity of the remote cause, I adopted a simple plan of noting five different degrees of size, which will be at once understood by reference to the annexed figure.
O. Signifies a distinctly-marked case of spleen.
M. One decidedly larger than 0 , and the mean between the five varieties.
L. A large spleen extending to, or near to the navel.

VL. A very large one passing across the medial line.
S. A small but perfectly marked case of the disease.

The soft enlargements were seldom registered, even when they presented themselves. I was generally obliged to put them aside among the "doubtful cases;" for although very confident as to the real nature of the disease, a mistake was possible. But when I felt a solid tumour in the left side, distinctly ascertained its shape, consistence, and the direction of its edge, and hence knew that such could only be an enlarged spleen, in so registering it, we recorded a fact, not a mere medical opinion, resting of course on the credibility of the witness.

The very large spleens sometimes met with in bad localities, were rarely admitted into our returns, because the subjects usually presented themselves as "volunteers," and according to the rule adopted, were rejected.
(Signed) T. E. Dearster, Surgeon, 1st Brigade Horse Artillery, Member of Committee.
Abstract showing the comparative salubrity of seven different Military Stations in the North-Western Provinces, from 1825 to 1844.

	Native Troops.												European Troops.											
	Loodiana		Kurnaul.		Hansi.		Delhi		Meerut.		Muttra.		Agra.		Loodiana.		Kurnaul.		Meerut.		Muttra.		Agra.	
Years.											Percentage of Admissions.						Percentage of Admissions.							
1825	.								25	$0 \cdot 33$	28	$0 \cdot 30$	42	$4 \cdot 40$	\ldots				107	$2 \cdot 25$	14	\cdots	335	$2 \cdot 90$
1826	13	$0 \cdot 33$	23	$0 \cdot 20$	25	$0 \cdot 33$	61	$0 \cdot 83$	38	$1 \cdot 66$							76	14-25	112	$2 \cdot 66$		\cdots		
1827	21	$0 \cdot 60$	30	0.33	32	$0 \cdot 50$	55	1.00	49	1.00	33	$0 \cdot 60$	31	$1 \cdot 00$			148	$3 \cdot 75$	206	$3 \cdot 20$	175	4.75	235	$4 \cdot 80$
1828	24	$0 \cdot 16$	29	$0 \cdot 33$	45	$0 \cdot 33$	45	0. 50	24	0. 20	23	0.30	15	$0 \cdot 25$			140	$3 \cdot 25$	175	$3 \cdot 50$	115	$1 \cdot 10$	228	$2 \cdot 70$
1829	65	$0 \cdot 80$	48	$0 \cdot 66$	137	1.75	123	$1 \cdot 66$	52	$0 \cdot 50$..				198	$3 \cdot 50$	152	$3 \cdot 20$..
1830	42	$0 \cdot 33$	45	$0 \cdot 40$	84	$0 \cdot 75$	113	1-20	52	0. 25							140	$2 \cdot 50$	145	$2 \cdot 50$.	
1831	37	$0 \cdot 40$	44	$0 \cdot 40$	39	$0 \cdot 50$	77	0.80	41	0.33	52	$0 \cdot 80$	40	$0 \cdot 50$			130	$2 \cdot 75$	118	$3 \cdot 00$	161	$2 \cdot 90$	144	3-00
1832	37	0-60	69	0.75	24	$0 \cdot 10$	41	0-33	41	$0 \cdot 37$	36	$0 \cdot 40$	46	0-66			136	$3 \cdot 40$	94	$3 \cdot 50$	75		102	$1 \cdot 55$
1833	17	$0 \cdot 50$	46	$0 \cdot 25$	48	$1 \cdot 66$	62	$0 \cdot 66$	31	$0 \cdot 40$	32	$0 \cdot 90$	56	0.87			68	$2 \cdot 83$	78	$1 \cdot 83$	82	$6 \cdot 00$	112	$2 \cdot 12$
1834	46	$0 \cdot 20$	39	$0 \cdot 20$	142	1.50	41	$0 \cdot 75$	27	0.33	46	0.90	59	0-66			60	$3 \cdot 00$	88	$2 \cdot 25$	86	$11 \cdot 00$	109	$1 \cdot 66$
1835	58	$0 \cdot 33$	84	$1 \cdot 75$	57	$0 \cdot 25$	72	1-00	55	$0 \cdot 44$	66	0.70	78	$1 \cdot 57$			64	$1 \cdot 50$	78	$2 \cdot 66$	88		124	$1 \cdot 11$
1836	39	$0 \cdot 50$	55	0.66	44	0.08	61	0. 50	56	$0 \cdot 80$	46	$0 \cdot 70$	36	0.83			130	$1 \cdot 66$	97	4-00	142	$4 \cdot 70$	126	$1 \cdot 50$
1837	46	0-60	67	$1 \cdot 00$	181	$1 \cdot 83$	63	$0 \cdot 66$	44	0. 50	23	0-40	69	$1 \cdot 25$			157	$2 \cdot 30$	75	$1 \cdot 42$	82	$0 \cdot 90$	116	4-00
1838	55	1-25	93	$1 \cdot 10$	162	$1 \cdot 16$	71	$1 \cdot 00$	52	$0 \cdot 55$	66	3.10	173	$5 \cdot 75$			201	$7 \cdot 25$	121	4-33	176	$11 \cdot 50$	225	$7 \cdot 50$
1839	47	$0 \cdot 50$	54	$0 \cdot 66$	160	0.50	72	$0 \cdot 60$	49	$0 \cdot 60$	44	$0 \cdot 40$	92	$1 \cdot 25$	100	$2 \cdot 40$	171	$5 \cdot 00$	138	$2 \cdot 71$	129	$8 \cdot 75$	159	$5 \cdot 33$
1840	47	0-50	43	$0 \cdot 66$	185	$0 \cdot 33$	57	$0 \cdot 42$	36	$0 \cdot 37$	84	$0 \cdot 40$	125	$1 \cdot 50$	94	$3 \cdot 50$	152	3-40	113	$2 \cdot 25$	99	$1 \cdot 00$	151	3-00
1841	67	1.00	84	$1 \cdot 25$	264	$1 \cdot 60$	157	$1 \cdot 11$	69	$1 \cdot 00$	27	$0 \cdot 30$	79	1-60	109	$1 \cdot 80$	272	7-75	172	$3 \cdot 50$	146	$1 \cdot 10$	118	$1 \cdot 70$
1842	82	$1 \cdot 00$	115	$1 \cdot 12$	119	$0 \cdot 80$	293	$1 \cdot 66$	149	$1 \cdot 11$	41		144	$1 \cdot 10$	149	$4 \cdot 33$	309	9-25	346	$3 \cdot 60$	69	$1 \cdot 00$	110	$1 \cdot 60$
1843	91	$2 \cdot 75$			111	$1 \cdot 12$	377	$3 \cdot 00$	116	$1 \cdot 00$	101	$3 \cdot 00$	87	1-66	185	3.66			293	$4 \cdot 00$	124	$6 \cdot 75$	141	$5 \cdot 60$
1844	141	$2 \cdot 14$	\ldots		93	$1 \cdot 00$	342	$3 \cdot 50$	115	$1 \cdot 12$	62	$0 \cdot 60$	99	$1 \cdot 60$	189	$3 \cdot 20$	\cdots	\cdots	307	$3 \cdot 60$	124	$1 \cdot 90$	125	3-30

The above table is compiled chiefly from returas furnished by the Medical Board. Those for Kurnaul having been returned for correction, the few
entries made under the head of that station have been extracted from a printed table by Dr. John Murray. The returas for Meerut and Delhi for the years 1842, 1843, and 1844, are stated to be inaccurate.

[^2]| | | | | | I |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | 1 |
| | | | | | 1 |
| | | | | の上： | 1 |
| | | | | サか： | 1 |
| | | | | | 1 |
| zumoury prnacy әवвләлу | | | | | 1 |
| | | 㝘 | | | 1 |
| | | 号 | | | 1 |
| | | ＋ | | | |
| panosy jo ә08juns
 | | | | | ¢ |
|
 | | | | | ¢ |
| | | | | | N |
| | | | | | 7 |
| | | | | | $\stackrel{8}{6}$ |
| $\begin{aligned} & \text { 总 } \\ & \text { 星 } \end{aligned}$ | gibiol | | | | $\stackrel{\infty}{0}$ |
| | | | | | － |
| | ＇งघाप्गय | | | | \bigcirc |
| | | | | のतल： | $\stackrel{\square}{\infty}$ |
| | ＇כх8＇כช＇suesumy | | 驻 | | $\stackrel{N}{N}$ |
| | | | | | $\stackrel{+}{9}$ |
| | ＇seruaung | | | | \＃ |
| | | | | | 7 |
| |
 | | | | $\stackrel{\square}{\square}$ |
| | | | | | $\overline{0}$ |
| | | | | | N |
| | | | | | 产 |
| | | | | | \cdots |
| | | | | | 10 |
| | | | | | $\stackrel{0}{0}$ |
| | | | | | 8 |
| $\begin{aligned} & \text { 总 } \\ & \text { ex } \\ & \text { 寻 } \end{aligned}$ | | | | | |

Abstract of Medical Examinations of Five Irrigating Villages situate half a mile or more from the Hansi branch of the Western Jumna Canals.

						-10∞	1
		s	以 0 －	ーパサ	サハが号	－ 50000	1
		\bigcirc	$\cdots \infty \times 0$	ツツツ9	のペーが		1
			∞ ：：＜－mの	∞ ：∞ on	：Nom	：：：：-	1
		H		$\infty: ~:-1$	：：	：：：：	1
		$\stackrel{4}{4}$	：：：：：：：	：：：	：：	：：：	1
	panosy jo әorjms 	灾					9
	－sпәәadS pasin！ua до әявыпәәлад				잉웅아앙		∞
		－		땡ㅇNㅇ		¢0웅％	\％
		－		N9\％8	号里89	N	$\stackrel{8}{+}$
		㧽		오요앙		M	\＃
$\begin{aligned} & \frac{5}{5} \\ & \frac{3}{4} \end{aligned}$	${ }^{8190}$	閏	み下oomerym	90の0	लめNH	「：Nのन	สี
				かへご号	Nㅜ국	－	$\stackrel{4}{0}$
		白	：ヵ ：：：ャ ：：-	งง（	o ：－	：：：：：	F
				ームの4	∞ ：：-	ーいめの＋	品
		垵	\rightarrow－onat：$: \infty$	：：：	：๓ ๙	：：－：－	－
		安	： ＋o ：－	：Nont	－	－\％：© +	๕
	－beraung	垵	：：\％：：：：	＊：：-1		：：：：	∞
		z	：ーサ！：－：¢	：-1 ：	－$: \infty$	－： $0:-$	\％
	 	浪	：：：：¢ ：：	：：∞ a	： 0 －	\rightarrow－－：	$\stackrel{\sim}{\sim}$
		\％	：：ヵ ：：ヵ ：：	：のかの	ののめ	－：0 ：＋	\bigcirc
		凶1	のみ！	以ー	：－rm	：：©	\＃
				－下：	のかめo	¢介：O－	$\underline{3}$
		9	ーNのヘース：：	∞ ：- n	：－ッन	：：：：	\％
		2		：み：		－：－：	＂
пе јо палрпй		9		두ำ	융の日	： 000	$\stackrel{\square}{\square}$
				のカ®N	－1゙ご	－ゴざつ	\％
Situation．－Villages．							歌

Abstract of Medical Examinations of Twenty－two Villages，situated within half a mile of the Delhi branch of the Canals west of Jumna．

		1	$\stackrel{\infty}{\sim}$
		1	$\bigcirc \mathrm{m}$
		1	$\stackrel{\sim}{10}$
		1	：00
		1	
		1	
		1	：：
－rịur ${ }^{20} L$ jo uonnodoxd		1	
 		1	
－ qunowy fenuay åbsas V		｜	：：
＇punosy jo asъjuns 		$\stackrel{ }{2}$	Fis
		$\stackrel{\infty}{\circ}$	枵尔
		7	$\stackrel{5}{9}$
		$\stackrel{10}{7}$	N\％
		的	88
哥H		－	ぶ
		\％	109
		－	N－
		N్N	
		$\stackrel{+}{\infty}$	
		∞	${ }^{\text {Le }}{ }^{\infty}$
＇supuang		\cdots	：
	台三！	8	${ }_{\text {No }}$
		$\stackrel{\sim}{7}$	
		\cdots	
		8	
		\＃	
		－	
		7	\cdots
	ル ¢ ¢	13	－
	又 ¢－0以	会	T90
		（	

					I
					1
					1
					1
					1
${ }^{\bullet 日 1}{ }^{\text {P }}$ M					$\stackrel{\infty}{\sim}$
qunoury prnuav әївдәлу					
		（⿳亠丷厂犬		 － atcon an 0 NTM	
		畹			
		$\stackrel{\leftrightarrow}{\circ}$			
					$\stackrel{8}{7}$
					O
					$\stackrel{9}{8}$
					3
$\begin{aligned} & \text { 要 } \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \mathbf{3} \\ & \text { 呂 } \\ & \hline \end{aligned}$				$\stackrel{\infty}{\sim}$
					¢
	－¢！घ！ueगt				$\stackrel{\square}{-}$
					0
				¢い！サーN：	¢
					7
	－9beraung				8
				以ぃのサन：	∞
					－
					6
				：	${ }^{+1}$
					틀
					9
					$\stackrel{\square}{0}$
					∞
					\％
$\begin{aligned} & \text { 总 } \\ & \text { 最 } \\ & \text { 品 } \end{aligned}$					

Abstract of Medical Examinations of Nine Irrigating Villages, situate within half a mile of the Rohtuk branch of the Canals

Abstract of Medical Examinations of Six Irrigating Villages distant half a mile or more from the Rohtuk branch of the Western

Abstract of Medical Examinations of Twenty-four Unirrigated Villages in the Delhi Territory.

Adstract of Medical Esaminations of Twenty-one Towns and Villages in the Protected Sikh States, of which Twelve are connected, and

vol. III.
Abstract of Medical Examinations of Thirty-four Villages, \&c., practising Well Irrigation in the Northern Dooab.

		1
		1
		1
		1
	н: : : : : : : : : : : : : : :	1
	卢: : : : : : : : : : : : : : : : :	1
'punos, 10 әгॄцй әч? шоду 		*
 		∞
		\%
		-
		¢
${ }^{9} 9870{ }^{\text {a }}$		ก
		-
		∞
		$\stackrel{\sim}{*}$
$\begin{array}{r} \text { 'ग8 } \\ \text { 'बubsijuy } \end{array}$		N
-8ө!aung		15
		$\underset{\sim}{\#}$
иหшрияรกา		∞
		$\stackrel{\text { N }}{0}$
		7
		N
 		5
		\pm
-вอвяч 		$\stackrel{\bullet}{8}$
		8

Abstract of Medical Examinations of Twenty Unirrigated Villages，of which Five are in the N．W．Khadir of the Ganges，and Fifteen are situated on the High Land of the Dooab．

			1	Hoshos：	1
			1		1
		－゙！ハのサ	1		1
		غ - ：$-\infty$ ：	1	：：：：：：：：－：：：：：：	，
		н ：：：：	1	：：：：：：：：：：：：	1
		¢ ：：：${ }^{\text {－}}$	1	：：：：：：：：：：：：：	1
	panow jo әәखjins 		$\stackrel{\sim}{\text { ® }}$		H
			$\stackrel{\rightharpoonup}{\text { a }}$		∞
			$\stackrel{\infty}{\sim}$		$\stackrel{\sim}{-1}$
			\％		8
			7		앙
$\begin{aligned} & \text { 亲 } \\ & \text { 号 } \end{aligned}$	$8 \mathrm{Pl} \mathrm{P}_{1} \mathrm{~L}$	法的नみ0 0	－		0
			∞	O్－	莒
			∞	：：：：：：：$: ~: ~: ~: ~: ~, ~$	\cdots
		云： com	∞		盛
		冈่：：\times ：	∞	：：：：：：：：：：：：：	：
			今		¢
	－sbigumg	国：：- ：	－	：：：：：：：：：：：：ヵワ	－
		只みが吅	ヘ	－no ：	앙
		м ：：：：	\cdots	：：ヵ ：：：：：：：：：：：：	$\underline{\square}$
		石：： 0 ：	9		¢
		ばっ：©	∞	$\neg:: ~: ~: ~: ~:-~: ~: ~: ~: ~: ~: ~$	\cdots
		云－	∞		8
		®込－：－：	∞	：：：：：：：：：：：：：：	：
			\＃		建
			N		1
			$\stackrel{\infty}{\infty}$		－
					$\begin{array}{r}\vdots \\ \vdots \\ \text { \％} \\ \text { \％} \\ \hline\end{array}$

Abstract of Medical Examinations of Twelve Irrigating Villages more than half a mile distant from the Suharunpore, or Eastern

$\ldots{ }^{\circ}$	Percentage of Enlarged Spleens. Adulte and Children of all Classes.	Percentage of Adults having suffered from Fever in			Average Depth of Water from Surface of Ground.
Irrigated from the Western Jumna Canals :-		1844.	1845.	1846.	Feet.
Delli Branch $\left\{\begin{array}{l}\text { Within half a mile of the Canal }\end{array}\right.$	58	51	45	41	11
Deln Bran \quad............ , Distant more than half a mile	49	51	49	40	18
Rohtuk Branch $\{$ Within half a mile of the Canal	44	47	38	27	28
Rohtuk Branch \{ Distant more than half a mile	29	34	34	27	48
Bootana Branch.............. Distant more than half a mile	16	41	36	22	102
Hansi Branch $\left\{\begin{array}{l}\text { Within half a mile of the Canal }\end{array}\right.$	39	50	41	22	92
Hansi Branch $\{$ Distant more than half a mile	18	40	31	16	118
Irrigated from the Eastern Jumna Canals :-					
Northern Division..... $\left\{\begin{array}{l}\text { Within half a mile of the Canal }\end{array}\right.$	20	27	39	27	8
Northern Division...... , Distant more than half a mile	22	37	47	30	13
Centre Division $\left\{\begin{array}{l}\text { Within half a mile of the Canal }\end{array}\right.$	59	63	54	31	8
Centre Division ${ }^{\text {a }}$ Distant more than half a mile	47	60	53	33	14
Southern Division $\left\{\begin{array}{l}\text { Within half a mile of the Canal }\end{array}\right.$	25	48	40	17	24
	18	47	30	14	34
Irrigated from wells in the high land of the Doab	8	37	31	20	24
Unirrigated :-					
Sikh States...............$\left\{\begin{array}{l}\text { Connected with the Canal................ }\end{array}\right.$	44	47	52	26	-
Sikh States $\ldots \mid\{$ Unconnected with the Canal..............	29	43	61	30	-
Delhi Territory Unconnected with the Canal...............	11	32	28	11	88
\{ High or Bangor land.......................	3	32	30	13	46
Northern Doab $\left\{\begin{array}{l}\text { Ganges Khadir }\end{array}\right.$	21	41	42	28	25
Near head of Eastern Jumna Canal......	6	35	43	27	
Naturally malarious localities $\left\{\begin{array}{l}\text { Nujufgurh Jheels }\end{array}\right.$	44	42	59	57 31	15
Naturally malarious localities $\{$ Valleys of Jumna and Hindun.............	34	46	42	31	14

Appendix E.
 Abstract of the Medical Examinations, affording the principal data for the foregoing Report.

The recorded numbers of natural and enlarged spleens may be received as representing authentic facts.
The percentage of sufferers from fever in the several years is deduced from the xecords of oral testimony collected by the Committee, and may possibly in many instances be not strictly correct. It is hoped, however, that in the general averages will be found an approximation to the truth, and the means of comparing with tolerable certainty the salubrity of different years.

The depths of water from the surface of ground were ascertained by actual measurement, and the information regarding the extent and nature of canal irrigation was furnished by the superintendents of the respective canals.

Explanation of the headings, used in the subioined Abstracts.

N. Natural or healthy spleen.
E. Enlarged opleens.

VL. L. \&c. Sizes of spleens as in Appendix C.
Tor irrigation is where the water flows naturally over the soil as distinguished from
Daul irrigation, where the water is artificially raised to the level of the ground.
The areas of irrigated land are stated in beegas of 3,025 square jards, 640 beegas being equal to one square mile.

Appendix F.

Measures connected with the Execution and Management of the proposed Ganges Canal, alluded to in paragraph 15 of the Report, as deserving the attention of Government.

TaE Committee would recommend as follows:-
1st. That the Ganges Canal be kept as much as possible within soil, i.e., that its ordinary surface level should be below that of the country.

2nd. That earth wanted to complete embankments, be never obtained from excavations made outside of the canal, except in such localities as will readily admit of drainage.

3rd. That the canal and its branches be taken as much as possible along the water-shed line of the country, so as not to interfere with drainage, and in all cases where such interference may be unavoidable, that the executive office be instructed to provide otherwise for the drainage.

4th. That masonry drains be constructed under Rajbuhas or Bridge Ramps, whenever these cross the drainage of the country.

5th. That no private watercourses be allowed, but that irrigation be practised exclusively from Rajbubas or main watercourses.

6th. That irrigation be prohibited within five miles of a military station and within one or two miles of large native towns.

7th. That in clearing embankments, the grass, weeds, \&c., be not suffered to rot on the ground, but that they be burned as soon as possible after they are cut.

8th. That irrigation be altogether prohibited in localities which appear naturally to possess a malarious character.
The Committee are aware that the adoption of the measures above recommended would involve an expense not contenplated in the original estimates for the Ganges Canal.
(Signed) W. E. Barer, Major, Engineers, and President. (Signed) T. E. Despster, Surgeon, Member.

Appendix G.

Comparative Anstract showing the Ratio of Population to Area in certain Irrigated and Unirrigated Districts of the North-Western Provinces.

Name of Collectorate.	Number of Villages.	Aqgregate Aren in Beegas of 3,025 Square Yards.	Aggregate Yopulution.	Population per Square Mile.	Average Population per Square Mile.
Irrigated from Canals:-					
Paniput	96	329,947	74,360	231)
Delhi	49	101,472	33,754	341	,
Rohtuk	52	221,262	60,007	278	\} 317
Hissar	35	224,563	11,485	54	
Mozuffernuggur	15	23,195	15,406	680	
Irrigated from wells:- Mozuffernuggur $\ldots \ldots \ldots . ~$ 00 118,856 57,065 497					
Unirrigated :-					
Paniput	29	61,194	12,320	206)
Rohtuk	61	373,531	59,895	164	\} 165
Hissar	40	323,207	16,014	51	
Mozuffervuggur	73	95,416	22,189	238)

This Abstract is referred to in paragraph 19 of the Report.

(Signed)	W. E. Baker, Major,--President.
(Signed)	T. E. Dempster, Surgeon,-Member.

vOL. III.

Appendix H .

Abstract of some of the principal facts recorded in the Report of a Medical Committee appointed in the Government of Madras to investigate the causes of an epidemic fever which prevailed in the Provinces of Coimbatore, Dindigul, Madura, and Tinnevelly, during the years 1809, 1810, and 1811.

Tre soil of Coimbatore is in general dry, but there is no want of extensive tanks. In the vicinity of the Hills is much low marshy ground, and many villages in such situations are proverbially unhealthy. On the whole, the Coimbatore country may be called healthy in common years.

Dindigul is a mountainous and woody country, encompassed by high lands, and more or less covered by jungle of prodigious height. Climate stated to be proverbially healthy in common years.

Madura is a more open and less mountainous country than Dindigul; it is hotter in the hot season and not quite so cold in the months of December and January. The climate of this district, in common seasons, cannot by any means be considered unhealthy, although the fort has been so for several years, and before the epidemic prevailed. Like most mountainous countries in the torrid zone, Madura bas situations where fever never fails, at certain seasons, to be endemic; but the disease does not generally spread beyond these loealities. There are some villages close to, and amongst the hills, lying in the most western parts of the province, in which, in the months of March and April, no man can pass a single night without suffering an attack of fever soon after. Both the houses and clothing of the inhabitants are of a very inferior description.

Tinnevelly is considerably lower than any of the other provinces in which the epidemic prevailed; it may, in the strictest sense, be called an open country; as few hills are to be found in it, and those are isolated or detached. It contains several waste and jungly tracts, especially towards the east. There are also, here and there, extensive low and marshy lands in the vicinity of the mountains, \&c. Situations at a certain distance from the hill, are higher and drier than those which are nearer to them. Culpettie, standing in a fine elevated country, was comparatively comfortable and healthy, whilst Tewancootshie, due west from the former and close to high land, was found nearly surrounded with wet ground, damp, ruinous and almost depopulated. Towards the southern and eastern extremity of the peninsula, there are many salt marshes, formerly distinct from each other, but four of them now (date of report) joined together, owing to recent inundations. They are separated from the sea by high sand hills, and have no natural communication with it. In common years there is not much water collected in them, but since the heavy monsoon of 1810, and especially since the rains which fell in February and March, out of all season, they have been filled to a depth of 5,7 , or 10 feet, and the water by remaining long in a state of stagnation bas been productive of infinite mischief. In December, 1810, the inhabitants of villages near these salt swamps (ten or twelve in number), complained that their houses were rendered uninhabitable, their lands flooded, and that water had risen so high on their Palmyra trees that they were unable to draw the "Toddy." The valley of Courtallum, however delightful its climate in June, July, August, and September, is far otherwise in February, March, April, and May; it partakes of both monsoons, and from its singular topographical position is, in a great measure, deprived of the salutary influence of the southerly winds. At the last-mentioned period, it is close, hot and sultry in the greatest degree, and never fails to be most unhealthy. Endemic fever, at such times, is as certainly met with here, as at Gambia or Senegal. On the whole the epidemic fever has raged with the greatest violence in Tinnevelly.

General Causes-Believed to be unusual and irregular seasons. Several remarkably dry seasons (themselves healthy), followed by seasons in which an unusual quantity of rain fell, prevailing winds blew with less regularity. Many cattle died, as much from an unnatural state of the atmosphere, as from a want of hands to feed and take care of them.

Progress.-The epidemic was first noticed in certain places close to the hills, marshy and proverbially unhealthy; and afterwards spread over tracts naturally drier and more healthy. Certain parts of the Madura Collectorate near the sea, or rather further removed from the range of mountains, escaped the discase altogether; with the exception of the inhabitants in the vicinity of a salt marsh. Tinnevelly appears to have been last in suffering from the epidemic. The fever invariably proved most destructive in those villages nearest the bills, in villages standing low, or in the vicinity of marshy lands, and among the poor ill-fed and badly-lodged population.

The disease, which proved so fatal in the southern provinces, does not differ from the common endemic of the country, which, at certain seasons, and in particular situations, may be every year met with. Its having been rendered epidemic on the present occasion, is altogether to be ascribed to the causes already mentioned.

(Signed)	W. E. Baker, Major,
(Signed)	T. E. Dearister, Surgeon,
	Member

Appendix I.

From A. Keir, Civil Surgeon, Ajmeer, to Major W. E. Baker, President Canal Committec.

Sir,-

Ajmeer, 18 th January, 1847.

I have the honour, in reply to your letter, No. 886 of $1846-47$, under date the 11 th December last, to submit the following observations, as the result of the inquiries I have made regarding the effect of irrigation practised in this district upon the health of the cultivators.

In the first place, relative to the expression made use of in your communication, " extensive irrigation," I would beg to remark that it seems applicable rather to denote the condition of the district as it now is, with reference to its former unimproved state before coming under Major Dixon's management, than the actual amount of irrigated as compared with unirrigated land to be found within its limits.

External Feature of the Country.-Characteristic of this part of the country generally, and of the Ajmeer district in particular, are the numerous ranges of rocky hill which give a bold and rugged aspect to the scenery, but which tend in no less degree to modify the soil and its productions. From these hills come down numerous small streams, the channels of which remain dry during a great part of the year, but speedily fill after a heavy fall of rain. It is by taking advantage of the water thus poured upon the ground, by making embankments, and so laying it under contribution, that some degree of fertility is imparted to a district otherwise of a highly unpromising and unfruitful description. Wonderful, incleed, and pleasing is the change which has been effected by such means. The waste has been subdued in many places, and instead of a bare, barren-looking surface, producing only a few thorny shrubs, there is now to be seen a smiling sheet of cultivation; and this extending year by year as the skill and industry of the people can be brought to bear on the work of improvement.

Geological Character of the Hills.-'The hills of this district of country belong to the primitive formation. They consist principally of granite rock (granite and gneiss), quartz-mica, and hornblende schist; crystaline limestone is found in the valleys, but the crystals large and the stone of a coarse description. The materials composing the rocky masses are aggregated in every variety of way and proportion, and hence occurs a great diversity in the colour, aspect, and consistence of the different rocks.

Inclination of the Strata.-The general structure of the rocks is schistose, and the strata for the most part have a very high inclination. 'The dip varies exceedingly. Hereabouts it seems to be more often from west to east ; but in other parts the opposite direction prevails. There can be no particular rule laid down in this respect, as regards the lakes or reservoirs for irrigation. These are found on one side of the hill as well as the other, and in the valleys between different ranges. Without minute investigation, the direction of the strata may generally be judged of by the appearance of the hill, the steep abrupt face showing the broken termination of the strata, the opposite more inclined face indicating their direction upwards. In many places the strata seem perpendicular to the surface, or very nearly so.

Soil and its Qualities - The soil of the district is composed of the débris of these different rocks. It is in a large part silicious; but mica abounds in it, and also felspar. The latter ingredient, washed down by the nullahs, exists abundantly in the beds of talaos or tanks, and there gives a clayey consistence to the soil. A "light reddish loam" may perhaps be the appellation most generally applicable to designate the character of the soil. Tried with acids it effervesces tolerably freely. A correct analysis, however, I am not prepared to offer. Calcareous earth is very abundant in some situations, particularly so along the margins of nullahs, where it exists in the form of "kunkur," mixed with other gravelly matter. The proportion of material of vegetable origin is not in general great. Heace the practice of "manuring" is one diligently followed, and the crop in general rises in proportion. Indeed, without "manuring" there is little to be got from a soil so naturally poor. An exception is to be found in this respect in the beds of "talaos," where, from the washings of the stream, there is a rich alluvial deposit, and where, in cousequence, excellent crops are raised independent of manure. The ground so favourably situated, however, forms but a small space. The salts which seem most to abound in the soil are those of soda, the muriate and carbonate in particular. In some parts the effervescence on the surface is very abundant, and this has sometimes an alkaline and sometimes a strongly sultish taste. Dr. Irvine remarks that the quantity of potash in the soil, comparatively with the quantity of decomposing felspar and mica, is small.

But not only is the soil poor as respects the proportion of fertilizing ingredients, it is likewise, over a considerable part of the district, deficient as to quantity. The nearness of the rock to the surface may in general be guessed at from its coming into view cvery here and there. In some places there appear round or tabular masses of rock; in others sharp spinous looking ridges. These latter are gencrally of quartz, and indicate the direction of "dykes or veins ;" the material from its hardness having withstood the action which has disintegrated and decomposed the softer rocky masses around.

Country adapted for Tanks.-Happily, a country of this description is well adapted to illustrate what may be done for its improvement by artificial means. The materials are on the spot, and by means of embankment way even the smallest stream can be made to produce its full fertilizing influence upon the soil. To discern the places where embankments may be most fittingly raised requires considerable skill. But an eye accustomed to such observations will detect the ground where the water may be most easily retained, and where the work can be most advantageously undertaken.

Embankments, their Uses.-The object of the embanking process is not merely to have a body of water that may be run off for the purposes of irrigation. 'This, though a legitimate end in many situations, is not always attainable. A tank, although it holds water only for a certain period of the year, may still serve a useful purpose by its effects in diffusing moisture throughout the neighbouring soil, and which may thus be rendered fit for cultivation. Some of the richest looking cultivation in the district is to be seen immediately along the margins of the tanks, and, progressively, in its bed as the waters recede. Another grand object, and the primary one in many cases, in the formation of these tanks, is the replenishment of the wells. Very many of the wells in this district would completely fail in bad seasons, or yield a most insufficient supply, except for the influence they derive from the neighbourhood of tanks: and here may be seen the admirable beauty and utility of such works, and the inestimable benefit they confer in a district of country where the fall of rair is frequently scanty and at all times precarious. The water, whatever the season supplies, is kept as in a stone house. It may sink into the earth; but can be again drawn forth and poured upon the surface, which thus becomes fertilized in the time of need.

Wells.-The wells, as to quantity of water and its distance from the surface, will of course vary with the state of the tank, at least all those so situated as to be affected by tanks. After a season of plentiful rain like the past, the water in most of the wells is abundant and moderately near the surface. From 30 to 40 or 45 feet* may be about the average depth at which water is obtained, but in this there is considerable variety according to situation and other circumstances. When the rains have been scanty, the supply in the wells is also apt to be scanty, and may fail during the hot weather. With the ground so saturated as it is now there need be no apprehension on this point. Even a season of " drought" ensuing after one like the past would be but partially felt.

Water of the Wells and Tanks, the Difference.-There is a considerable difference in the chemical proportion of the water as taken from wells or from tanks. The tank water is generally much less impreguated with salts, and therefore preferable for domestic purposes and most agricultural ones; so much so is this the case, that in many parts the villages may be seen to use the muddied "tank water" in preference to that from the wells. Where the soil containe a large amount of salt, the well water becomes entirely unfit for irrigation. This is the case in some parts of the Ramsir district, where the salt effloresces abundantly on the surface. The evil is corrected in some degree by the use of tank water, and but for this the extensive kbêts to be seen in that neighbourhood could have no existence. Some cropa, however, as the barley, suffer less from this ealine impregnation. At the station of Nusseerabad, from the want of tank water, little or nothing can be done in the way of cultivation. Gardens there are next to useless, and the best efforts lead but to disappointment. At Ajmeer, and this neighbourhood generally, the case is different. The well water is good, and answers for irrigation.

Re-agents, effects of, with the Water.-Water entirely free from saline impregnation is not to be found either in the wells or the tanks. From the water of all the wells I have examined the nitrate of silver throws down a copious precipitate. The "Ana Sagur" water, which is that of the lake, gives a precipitate, but very much fainter. In other parts of the district I have observed the same difference in relation to tank and well water. The oxalate of ammonia gives a distinct precipitate with the "well water" of Ajmeer, but there is none with that of the lake. Solution of pure potass causes a faintish precipitate with the well, but not with the lake water. The nitrate of barytes causes a precipitate with the well, but not with the tank water.

Irrigation, its Effects as to the Health of Cultivators.-As to the effect of the irrigation practised in this district upon the health of the cultivators, information will be best gathered by a reference to the result of my inquiries on that point contained under the head marked B. The investigation was carried on by myself on the spot, and in the manner directed. Taking the results obtained as affording a criterion by which to judge of the healthiness of the cultivators throughout this district, it certainly leads to the conclusion that irrigation, as here practised, is not in any high degree injurious. The sufferers from spleen are chielly children. As regards European children, particularly young children, I mas remark that the climate of this part of India, as far as my experience goes, is not the most favourable. To my questions on the subject of fever, I found it difficult, I may aay impossible, often to obtain precise answers. Whether from wilfulness or forgetfulness, the latter I believe most generally, there seemed very often no distinct recollection on the part of individuals as to whether they had suffered from attacks of fever in previous years or not. On this subject a good many mis-statements may have been made. The probability is, that when there was an indistinct recollection as to the occurrence of fever, it could not, in such cases, have been of a serious or debilitating kind.

Cultivators, their Healthy Looks.-To form a judgment as to the health of the inhabitants from their looks and appearance there was the best evidence everywhere that they were far from an unhealthy race. Indeed, in few of the villages visited could I make out any considerable amount of disease. Among the most common complaints were chronic skin diseases, rheumatism, old and indolent ulcers. A good many prematurely old looking persons were to be found, but there is more reason to believe this a consequence of hard work and indifferent food than any effect qu their constitutions produced by the climate or soil.

Questions as to Effect of Irrigation.-I made inquiries on many occasions, as to whether, with the increase of irrigation, there had been observed any increased amount of sickness. The reply was uniformly in the "negative." So much more, amongst them, does consideration attach to "plenty" than to health, that the inquiry seemed to be rooked upon as a highly absurd one.

- I have not noticed the depth of water in the wells. I did not obserfe this was required till after visiting the villages. Here 30 feet water at deptl of 30 feet, which may be near the average of permanent as diatinguished frow temporary wells this year.

The circumstances under which the irrigation is practised, and which tend to render it so little hurtful, I conceive to be chiefly the following:-

General Nature of the Climate; the Villages, how situated.-The climate is essentially a dry one, and at the same time salubrious. The villages, in respect to the irrigated land, are almost invariably high in point of situation. For the most part they rest on the slope of a hill, either near its base or on the steep itself; or they extend along some rocky ridge. The village of Ramsir, for instance, situated as it is with a lake on one hand (and this apt to dry up in some seasons), and a freely irrigated country on the other, might certainly, from its position, be looked upon as a very focus in respect to malaria, yet still, as far as inquiry enabled me to find out, no great unhealthiness appears to prevail. What, in the main, conduces to this favourable, and, so far as appearances go, unexpected state of things, is, I doubt not, the situation of the village, high and dry and upon a rocky ridge. The elevation of the sidge is incousiderable, but still the houses built upon it may be considered well placed, and in some degree removed from the immediate influence of the soil.

Nature of Crops irrigated.-The most sickly time of the year is the month of October; and during this month and early in November the days are hot, and the atmosphere contains much moisture. Besides this, I believe, that the newly-upturned and newly-irrigated soil is the most apt to give forth noxious exhalations. The after irrigation, provided the fields be kept free of weeds, as they are here, has little, if any, injurious effect. The fields regularly irrigated are those of the wheat and barley, and the work goes on with little intermission until February. Irrigation is practised for other crops, at different seasons, but to a trifing extent only.

The Soil as affected by Irrigation.-The circumstance chiefly operative as regards the health of the people employed in irrigation in this district, I conceive to be the "absorbent nature of the soil." The underlying rocks, too, have a highly absorbent character, and hence water poured upon the surface sinks into the earth speedily. It is owing to this property of the soil that the clothing of herbage is everywhere so scanty. Soon after the first early rain the grass springs up, and the dry, burnt-up waste becomes overspread with green. When the rain has ceased, or very soon after, a change in the appearance of the scene takes place. The surface becoming dry, the more delicate grasses wither, and nothing has a thriving aspect but the wild shrubs and bushes such as the "ah," the kunserah, the " beanil," \&c., which deligbt in a barren soil. Trees, when they have once struck their roots deep into the earth, and can draw from it moisture for their own support, thrive well, but, until they have arrived at this stage of growth, require much care and tending. Hence so few are to be seen, and those only in the vicinity of villages.

Inclination of the Surface; stagnant Water.-It is easy to understand why a soil of this kind should be less injurious under the influence of irrigation than one of a different description, where the vegetation becomes more luxuriant, and where, at certain times, it is liable to decay and decomposition. Another favourable circumstance as regards this district is the little disposition of water to stagnate. The ground being inclined more or less in all parts, water runs freely, aun, conducted into a tank, is in the condition least of all likely to have any prejudicial effect. It is only in the immediate vicinity of Ajmeer itself (at the Daulut Baugh, and in front of the magazine), that I have observed any ground covered by water in a stagnant state, and in a state likely to give forth unwholesome exhalations. From the overflowing of the Ana Sagur Lake this was partly unavoidable, during the rains at least, but the cvil has been allowed to exist long after the remedy, the simple one of draining, might have been applied. That this state of things has produced the great amount of fever that has prevailed in the town the last season, I am not prepared to say: but it may have had some effect. Other apparent causes exist; and the season, moreover, has been generally an unhealthy one, although not so, in a great degree seemingly in the smaller villages of the district.

Swamps and Marshes. - One point on which information is desired is as to the amount of ground in a state between "dryness and moisture." Of natural swamps or marohes there are none, so far as I know, in the district. A few swampy spots there may be after heavy rains, but not such as to give any cause for appreliension. The condition of the Ramsir Lake I have not observed at all seasons: some portion of its bed may possibly remain in the state of a swamp during the hot weather, hut how much or in what precise condition, I am not able to say. The only permanently swampy ground I have observed has been immediately in the vicinity of tanks, and produced either by leakige through the bund, or by water finding its way by percolation underneath. The ground in this direction, so long as there is water in the tank, remains generally moist, and this term expresses its condition in most cases better than swamp.

The drying up of the tanks begins in the opposite direction, or towards the source of supply. When there is much clay in the ground, the surface becomes hard, and cakes as the water gradually recedes. When there is a due proportion of vegetable mould, the soil here is of the best description, and affords the richest cultivation.

Drying up of Tanks.-It is when lakes are in a process of drying that they are most likely to be injurious by giving out malaria. When there is plenty of water in the Ana Sagur Lake, no place is more desirable as a residence than the bund; but it is not so in particular seasons when a large portion of the bed of the lake has dried up. Most of the other lakes in the Ajmeer district are small in comparison, and injurious consequences from this source need not be apprelended.

Abstract of Medical Examinations referred to in the foregoing Report.

Appendix K.
From N. Collyer, Esq., Assistant Surgeon Mhairwara Local Battalion, to Major W. E. Baker, President Canal Committee.

Dated Beawr, 4th February, 1847.
Str,
I have the honour to forward for your information the accompanying statement of an examination of twelve villages conducted by me in accordance with the prescribed form contained in your letter, dated 11th December, 1846 ; and I beg to state that for the purpose of investigation I have selected those villages which have the largest tanks and the most extensive irrigation. I am sorry to state that I have not succeeded in procuring the full complement of children, from their parents having taken them away into the jungle at hearing of my presence, being influenced, I cuppose, by fear or prejudice through ignorance of the cause for which I required their presence. I trust, however, that the number of children contained in my report, will be found sufficient to indicate the general healthiness of the district and its freedom from ague and apleen.

The general character of the cultivated soil in the immediate vicinity of the hills is of a dark, rich, loamy description, and very productive. It consists of disintegrated mica, schist, and felspar, combined with decomposed vegetable matter and salts of alumina, silica, and potash, with oxide of iron. In other parts it is of a lighter kind, and abounds with aluminous and cretaceous marls. It is of a highly absorbent nature, the surface of the land quickly becoming dry after the heaviest falls of rain. The surface of the irrigated parts inclines naturally from the bed of the tulao.

The rain crops consist of bajra, til and moong with moth, and are sown without manure in June, and likewise mukka, tobacco, and cotton, which are manured.

The rubbee cultivation commences at the end of October, and consists of wheat, barley, gram, sursoo, and opium; and such as are irrigated, if they eacape the severe frosts and hail storms, yield a plentiful crop. Irrigation commences in November, and is continued until the end of February or beginning of March.

On the secession of the water the land is ploughed up as soon as it can be worked, and sown with the rubbee crop until the 15th of December. Such portion of the bed of the tank as becomes available for cultivation is sown during the monthe of February, March and April, with mukka. Thus the inconveniences likely to arise from the gradual
drying up of the soil in obviated by its being immediately sown with corn. In view to increase the subsistence of the people, the water-rut is freely cultivated on the surface of various of the tulaos, and without any apparent detriment to health. Moist swampy ground abounding with a variety of coarse grasses, and covered with a saline efflorescence (impure sub-carbonate of soda) prevails very generally on the rear of the embankments of all the tulaos.

The diet of the inhabitants consists chiefly of barley and mukka with dal of moth, moong, lobya and oorud ; they are clothed in coarse cotton cloths, and appear very cheerful and contented.

It is a characteristic of the Mhairs that they always locate their villages on heights ; hence in a measure may be attributed their general good health.

From about the 15 th January to the end of September the prevailing wind is from the south-west. During this period it generally blows strong and steady. During the remaining portion of the year, shouldany wind blow, it is from the east.

The hills in Mhairwara are all of the primitive formation, and embrace all the varieties of rocks usual under such circumstances : they are principally formed of granite, having separate beds of mica, quartz, felspar with hornblende, and veins of granular limestone ; gneiss is in great abundance, and is used for slabbing the roofs of houses.

The depth of the soil varies greatly in different situations. It is formed of the débris of the hills, mixed up with decomposed vegetation. As a consequence, it is deeper in the valleys than on the slopes of the hills; the greatest depth may be taken at 10 feet, while in other places it is restricted to a slight covering of only a few inches.

In conclusion, I would beg leave to remark that from the observations I have made, and from information I have gleaned from other sources, the impression on my mind is that hitherto no deleterious effects have arisen affecting the health of the inhabitants of Mhairwara either from the large bodies of water which have been collected by the tanks, or from the use of that water while being employed largely for the purposes of irrigation.

I have, \&c.,
(Sigued) N. Collyer, Assistant Surgeon, Mhairwara Local Battalion, in Medical charge.

Abstract of Medical Examinations alluded to in the foregoing Report.

Villages.		Adults.										Percentage of Adults having suffered from Fever in					Detail of Sizes of enlarged Spleens,			
						$\begin{aligned} & \dot{d} \\ & \dot{d} \\ & \text { d } \\ & \text { 邑 } \end{aligned}$														
Dilwara \qquad Bulhar \qquad			T	N ${ }^{\text {c }}$									$\begin{array}{\|l\|l\|} \hline 1845 . & 1846 . \end{array}$			Feet.	VL.		M. O . \mid S.	Total.
				N. E.					N. E.	N.										
	20.			8..											5	2			.. 11	2
	20.		1.	13.2	1.	1.			1.	18	2		5	15	5	6			. 1 1 \cdots 1 1	2
Purvrish...............	10.			10.					71	19	1	..		10	$3{ }^{1}$				\cdots	2
Beawr....................	20.	1	1	5.	. . .	ci	- 7		. 1.	19	1	\cdots	\cdots	15	$2 \frac{1}{2}$	18			\cdots	1
Kullinjur	20.			16.	. . .	1.	. 2	-	1.	20	. .	10	\cdots			6			- 1	\ldots
Gohanna................				18.	\ldots	1.	$\cdot 1$		1.	20	..		\ldots	\cdots	\cdots	$7 \frac{1}{2}$			
Nurbudea Khera.....	17.	. .	1	12.	\cdots		$\cdot 1$		6.	19	\cdots		15		$\ddot{2}$	6			. 1	1
Dewanta..............	8.			12.	\cdots	\cdots	$\cdot 1$		88	15	2		15		8	6			\cdots	2
Jowaja	16	1.	. . \cdot	15.	\cdots		. 1		2 .	20	.	.	\ldots		8 23	43			$\cdots{ }^{2} \cdot{ }^{-}$	2
Loosanee	15	1.		91	.. .				5.	19	1	23				$4 \frac{1}{2}$				
Kabree	15	11	1	131	.				1 .	19	1	24	23		$5 \frac{1}{2}$	42			$*$ 1 1 1 1 ..	2
Kallee Konkur	11.		1	6.	-	,			41	19	1		$9{ }_{3}^{2}$		34	9				1
	172			1314	1 ..	16				225		14	3	63	31	6			-	-
			True	Abstr	ct.]					Sign				E.	KER,					

Dr.
Expenditure on the Canals West of the Jumna in Account

Dr.
Expenditure on the Dooab Canal in Account Current
As per Captain Smith's bill from commencement to 31 at December, 1830
As per Captain Cautley's audited bills $\dddot{\dddot{r}}$ from $\ddot{\text { list }}$ January to 30th April, 1830

-	,		\cdots
"	"	"	1830-31
"	.	"	1831-32
"	"	"	1832-33
"	*	"	1833-34
"	"	"	1834-35
"	"	"	1835-36
"	"	"	1836-37
$"$	"	"	$1837-38$ $1838-39$
"	"	"	$1838-39$ $1839-40$

3,11,239 12 41	1,22,831 006	4,34,070 12104
$\cdots{ }^{\text {... }}$	3,924 12 O		3,924 12 0
\cdots	29,658 10 24	3,958 1809	$33,61612{ }^{12} 0$
12,022 4 9 ${ }^{11}$	$\begin{array}{lllll}47,905 & 11 & 2 k\end{array}$	$4,4760^{0} 94$	64,404 000
11,153 $7{ }^{7} 5$	27,870 ${ }^{5} 5$	10,929 $130 \frac{1}{2}$	49,953 10 2f
19,370 1310	31,767 30 3099	20,517 13 01 24,295 88 84	$\begin{array}{ccc}71,656 & 9 & 31 \\ 95,551 & 13 & 41\end{array}$
$\begin{array}{rrr}40,256 & 10 & 6 \\ 36,583 & 7 & 0\end{array}$	$\begin{array}{cccc}30,999 & 10 & 7 \\ 29,870 & 1 & 11\end{array}$	$\begin{array}{lll}24,295 & 8 & 314 \\ 24,234 & 8 & 0\end{array}$	$\begin{array}{cccc}95,551 & 13 & 41 \\ 90,688 & 0 & 11\end{array}$
26,599 710	$41,044{ }^{4} 8$	30,274 0 O $5 \frac{5}{2}$	97,917 12 111
8,744 810	32,727 8 0	24,900 115	66,381 12 3
33,208110	$33,820 \quad 2 \quad 1$	33,453 919	1,00,481 138
1,138 14	33,462 710	40,518 8 8 4	75,119 14
5,00,317 8107	4,65,882 $\quad 9 \mathrm{l}$ 2f	2,17,567 10 118	11,83,767 11114
25,168 58	34,479 20	34,642 51	94,289 $12 \quad 9$
99,396 $10 \quad 3$	34,794 $10 \quad 1$	30,644 119	1,64,836 001
10.60949	33,971 139	$37,740 \quad 27$	$82.321 \quad 5 \quad 1$
1,19,605 \quad l 3	31,23071	35,876 711	1,86,712 003
7,55,096 14 91	6,00,358 10 14	3,56,471 6 37	17,11,926 15141
30,385 205	30,738 110	30,931 12	92,055 96
11,427 00	$33,90010 \quad 8$	34,05426	79,381 $31 \begin{array}{cc}3 & 2\end{array}$
17,683 2	34,588 90	38,800 7	91,072 210
8,14,592 3 3 3t	6,99,586 888	4,60,257 12 7f	19,74,436 8 日 $0+4$

Current with direct Canal Revenue derived thereupon.
Cr.

with direct Canal Revenue derived thereupon.
Cr.

- - $\mathbf{6 , 0 8 3}$ 5 9 7,551 2 2 22,107 0 0 46,964 15 2 37,918 5 6 37,081 5 3 44,308 6 0 91,315 9 1 73,014 15 10 78,543 9 11	- - 884 12 58 2,476 10 2 4,902 15 109 4,435 13 $4 \frac{1}{2}$ 3,335 6 5 4,728 0 $7 \frac{1}{4}$ 5,154 11 22 5,001 6 9 4,358 4 6 4,288 4 2	- -2 29 4 41 107 3 2 83 14 5 52 5 61 100 12 5 63 13 0 61 10 0 189 13 0 104 0 0 65 14 0		- - 592 15 3 606 6 2 665 7 $7 \frac{1}{2}$ 773 11 8 815 15 54 1,034 9 4 1,168 5 2 1,222 5 2 1,073 9 1 1,282 8 0	- 730 0 31 1,209 0 8 1,075 13 0 1,270 1 5 1,250 12 1 1,325 1 4 735 10 7 2,847 14 6 2,967 13 0 3,812 6 9	8,293 6 19 11,959 14 11 28,846 15 $2 \frac{3}{4}$ 53,504 5 44 43,421 3 104 44,232 13 64 51,517 7 4 $1,00,839$ 3 6 81,945 2 6 88,559 7 5
4,44,888 10	39,566 5 5 69	831911	1,372 $13 \quad 4$	9,235 $1210{ }^{\text {a }}$	17,224 10 73	5,13,119 15 0
$\begin{array}{rrr} 89,135 & 14 & 6 \\ 78,885 & 8 & 5 \\ 1,07,064 & 0 & 8 \\ 86,147 & 1 & 3 \end{array}$	3,297 9 2 5,713 12 6 6,194 0 9 8,178 13 0	$\begin{array}{rrr} 97 & 14 & 0 \\ 153 & 14 & 0 \\ 32 & 10 & 0 \\ 137 & 4 & 0 \end{array}$	$\begin{array}{lll} \cdots & \cdots \\ 963 & 2 & 11 \\ 522 & 2 & 8 \\ 351 & 5 & 11 \end{array}$	$\begin{array}{rrr} 2,470 & 0 & 5 \\ 1,645 & 3 & 5 \\ 1,940 & 7 & 6 \\ 1,413 & 12 & 9 \end{array}$	4,322 8 11 3,785 6 1 3,683 0 3 4,535 4 4	$\begin{array}{rrr} 99,923 & 15 & 0 \\ 91,16+ & 15 & 4 \\ 1,19.436 & 5 & 10 \\ 1,00,763 & 9 & 3 \end{array}$
8,06,121 36	62,970 81818	1,253 311	3,209 810	16,705 $411 \frac{18}{4}$	33,548 14 24	9,23,808 $12 \quad 5$
$\begin{array}{rrr} 84,786 & 2 & 0 \\ 96,534 & 4 & 4 \\ 1,07,725 & 1 & 8 \end{array}$	$\begin{array}{rrr} 6,045 & 4 & 3 \\ 8,121 & 15 & 8 \\ 7,838 & 0 & 6 \end{array}$	$\begin{array}{rrr} 217 & 15 & 0 \\ 103 & 8 & 0 \\ 305 & 0 & 10 \end{array}$	$\begin{array}{rrr} 280 & 14 & 5 \\ 414 & 10 & 9 \\ 609 & 2 & 1 \end{array}$	$\begin{array}{rrr} 1,704 & 1 & 11 \\ 1,725 & 11 & 1 \\ 1,842 & 0 & 11 \end{array}$	$\begin{array}{rrr} 5,736 & 4 & 7 \\ 3,086 & 6 & 11 \\ 3,433 & 6 & 7 \end{array}$	$\begin{array}{rrr} 98,770 & 10 & \mathbf{2} \\ 1,09,986 & 8 & 9 \\ 1,21,752 & 21 & 7 \end{array}$
10,95,166 11 G	84,975 12 69	1,879 11 9	4,514 41	21,977 2109	45,805 00	12,54,318 1111

VOL. IIL.

General Summary of Expenditure on the Ganges Canal to 31st August, 1845.

Masonry works-Comprising the foundations of the Myapoor dam and regulating bridge, revetments of the high gravel banks adjoining thereto up to the height of 5 feet. The foundations of a bathing ghat and the bythuk wall at Myapoor. The road and inlet bridges of the bochna nulla, workshops at Myapoor, model room and offices, and range of smith's and carpenter's shops, store-rooms, \&c., at Roorkee, first-class chokies at Myapoor, Muhmoodpoor and Belra, and second-class chokies at Munglour, Dimat and Toghulpoor (not including cost of bricks used in them)
Brick-making-Comprising the preparation of Government and contract kilns, as near the site of the principal masonry works as fuel could be obtained. Many of the kilns have totally or partially failed; and those of last year having not yet been unstacked, the precise number of serviceable bricks is not known, but may be roughly estimated at 200 lakhs
Workshops and purchase of store materials, such as lime, iron, stone, \&c....
Bullock: Cost of maintaining to be charged hereafter to the works on which they were employed
Compensation-For land and property, and remission of land revenue
18,585 116

Grand total expenditure up to 31st August, 1845, Co.'s rupees
Present monthly establishment of the Ganges Canal (including half the expense of the director's office, the other half being fairly chargeable to the other canals under his superintendence) ...

6,59,652 118
(Signed) W. E. Barer, Captain, Director of the Works, Ganges Canal.

Statement of the Gross Value of Crops grown on Land Irrigated from the Delhi Canals in 1837-38, the Greater Part of which Land would have been Totally Unproductive without the Use of Canal Water.
 KHUREEF CROPS.

20,490 Beegas of sugar-cane and indigo at 50 rupees per beega 10,24,500 0 o
75,242 Beegas of cotton at 12 maunds of kupas (or cotton with seed) per beega, and 16 seers of
 per beega...

RUBBEE CROPS.
19,000 Beegas of wheat, barley, gram, mustard, \&c., \&c., at 15 maunde per beega, and 20 seers per rupee, or 30 rupees per beega $\quad . . . \quad \ldots \quad$... $\quad . . \quad$... $\quad .$.

In the above statement, the produce per beega is stated at the lowest average of the staternents I have collected from zemindars of the produce of their fields, and will not be considered more than might be expected from land well cultivated and plentifully irrigated. The valuation is also lower than the market prices have been within my experience during the last six months. Of this sum of 146 lakhs of rupees, about one-tenth is recovered by Government on account of land-tax and water-rent; the remainder covers the expenses of cultivation, and provides maintenance for the population of near 500 villages.
(Signed) W. E. Barer, Lieutenant, Superintendent Canals.

APPENDIX C.

Quarterly System of Accounts and Bills as practised on the Ganges Canal.

The accompanying papers are drawn up so as to represent the entire working of a quarter's accounts of a division, and consist of the following papers :-

Appendix A.-The Daily Cash Account of the Division. This paper scarcely needs remark, as it is sufficiently explanatory in itself. It is similar to that used in all offices of account. It should be kept neatly and carefully, and duly posted every day, and should show clearly all the cash transactions of the divisional office; it is debited with all cash received from the Government treasuries, and credited with disbursements to subordinates in charge of sub-divisions, and contractors, agents, \&c., with whom the superintendent deals largely for the purchase of stores, \&c.; all petty purchases of materials being made by the subordinates in charge of sub-divisions. This account should be closed and balanced regularly on the first of every month, and handed in to the superintendent, who, after satisfying himself of its correctness, signs it, noting the balance in hand in letters as well as figures, and marking off each item in the account in the red ink characters that will be described hereafter.

Appendix X.-These papers exhibit the forms of accounts submitted by the subordinates in charge of sub-divisions, each month's accounts being supposed to be that of a separate sub-division, though for convenience' sake the materials in them are used to make up a quarterly bill for one work only, which bill, being the largest and most detailed in the series of bills periodically submitted, I selected as the most illustrative of the system. On the receipt of the sub-divisional papers, the head clerk of the office examines them, carefully corrects any errors that may exist, and, this being done, he returns them to the superintendent, who proceeds to mark off each item in characters to be noticed presently, and which characters show the head clerk distinctly to what heading in the office accounts every item belongs. There are other periodical papers, independently of those illustrated, which are submitted from the sub-divisions, such as monthly and quarterly store reports, detailed progress reports, abstracts of accounts, \&c. ; but, as these are not indispensable to the illustration of the system of accounts, I have not thought it necessary to introduce them here. On the receipt of all the monthly papers back again from the superintendent, and duly marked off, the head clerk proceeds to draw up his own monthly papers as follows.

Appendix B.-This is an office account current between the sub-divisional subordinate and the superintendent. It differs only from the subordinate's own account current in so far that in the latter the subordinate debits himself only with cash received from the stuperintendent, and credits himself only with the cost of labour expended on his works, as well as with expenditure for the petty purchases of materials, \&c.; whereas, in the former, he is debited with the value of all materials delivered into his charge, and credited with the entire value of work executed, including the cost of both labour and materials. This has been found a very convenient method of procedure, inasmuch as it saves the office much labour and valuable time; and although it entails a very small amount of extra labour on each individual subordinate, that extra labour is amply compensated for in the information it gives the subordinate of the actual cost of the work done, which he could never possess, did he not know and calculate the cost of all the materials expended upon his works. This system enables the superintendent also, when going over his subordinates' accounts, to detect any extravagant expenditure and to correct it, or to observe where work is being
economically carried out, and to bestow praise on the subordinate so doing, which he could not have done had he to wait for a month or two until the accounts were completed in the office. The subordinates are supplied periodically with lists of the current rates to be charged for materials; these rates are average ones, being struck quarterly or lalf-yearly as most convenient or most needed: the subordinates then, when entering the quantities of materials expended, carry out their cost also, and thus exhibit in their daily reports the cost in labour and materials of all works executed during the month.

Appendix C.-This is a divisional account current, showing at one view the sum of the transactions of the sub-divisions and the office during the month. It is debited with all cash received from Government, and is credited with the cost of all work executed, and purchases, \&c., made throughout the division during the month.

Appendix Y.-This is an abstract of the sub-divisional daily accounts, showing the total expenditure during the month, in labour, materials, \&c., under each of the headings of Original Works, Stores, Executive Officer of Materials (Mr. Finn), Sundries, Tools, Current Expenses, and any other specific headings the superintendent may adopt, and from this paper all these items are debited off to their respective places in the books, which are in three volumes; viz. :-

Original Woris, Account Book	\ldots	...	\ldots	Appendix
Stores, Account Book	"
Miscellaneous, Account Book	...			

We now come to the method adopted by the superintendent in dividing off his accounts to their separate headings, and the characters used to distinguish them, which are simple enough-they are always represented in red ink, to distinguish them from the rest of the writing, and are as follow-any letters being used that may be convenient : -

1. Head Digcing.	C. Solan Aqueduct. 1. Coffer Dam.	M. Stores. 1. Timber Account.
	1. Coffer Dam.	1. Timber Account.
3. Rutroon Digging.	3. Masonry Aqueduct.	3. Lime Account.
4. Pecran Kulleeur Digging.	4. Earthern Aqueduct.	4. Charcoal Account.
5. Assoffnuggur Digging. \&c. \&c. \&c.	5. Solani cuts and bunds.	\&c. \&c. \&c. Miscellaneous.
B. Bridges.	R. Rutaoo Wonis.	F. Mr. Finn's Account.
1. Kunkhul Bridge.	1. Dam.	S. Sundmieg' Account.
2. Jowalapoor Bridge,	2. Inlet.	T. Tool Account.
3. Roorkee Bridge.	3. Revetments.	N. Current Expenses.
4. Peeran Kulleeur Bridge.	4. Regulating Bridge.	1. Establishment.
5. Muhewur Bridge.	5. Cuts and Bunds.	2. Ordinary Repairs.
6. Synibas Bridge.	6. 1st Class Choki.	\&c. \&c. \&c.

The accounts being all properly prepared for entry, the several items of expenditure and receipts are duly posted to their respective pages of account under the headings just described. The first of which

Appendix E is a very simple and useful account book, and is that from which the superintendent makes out his bills. It consists of two pages to each work or heading, the first of which contains the debits and credits to the account (the former being posted from the abstract book, and the latter from the bill book). The second page is a very useful appendage, and makes the whole a very valuable and complete record, as it shows, at once, the nature of all the items of expenditure, the work done and the nature of it, for each individual item; and it enables the superintendent to take up the book and make out his bills without any trouble or reference whatsoever. It possesses, moreover, the value of making the account perfectly clear to anybody.

Appendices F and G are filled in, in the same way, with exception to the detailed explanation of debits,
which may, or may not be kept as the nature and extent of the transactions may demand, it being decidedly advisable to maintain the detailed explanation, whenever the accounts are heavy and extensive. The store accounts get credit for the materials expended on the works, and the miscellaneous accounts get their credits as the state of his works and accounts enables the superintendent to adjust them. These miscellaneous accounts may all be called fluctuating accounts, with exception to the current expense accounts, which are adjusted by monthly current bills.

Appendix H is a check book, which it is necessary to keep to enable the head clerk to determine the correctness of his accounts. It is kept on the system of double entry, and needs no explanation, being a repetition in as abstract a form as possible of the former papers-the debits and credits of every account agreeing exactly with each other. The balance sheet of this check book shows at a glance the state of the affairs of the division, and, being closed, the head clerk can at once make up his general (Sayer) account current given in

Appendix D.-This account current is, however, submitted only half-yearly-it is submitted to the accountant North-Western Provinces, by whom it is checked-and any errors that may exist are officially notified to the superintendent for correction. This account is debited with all charges made by the Government against the division, either for cash or stores supplied from the different Government departments, and is credited only with bills duly audited; the way in which the balance unaudited or unaccounted for is disposed of, being explained under the head of inefficient balance.
C. Scanlan, Accountant-Director's Office, Ganges Canal Works.

Roorkee, 11 th March, 1854.

> Appendix A.
> DAY BOOK.-Casi Account Particular, Northern Division, Ganges Canal.

Daily Particolar Cash Account of the Northern Division of the Ganges Canal.

Damy Particular Casi Accouny-continued.

Balance in hand ($17,067 r s .1$ a. 5 p.) seventeen thousand and sixty seven rupees, one anna, and five pie.

A. G. Goodwin, Captain,
Superintendent Northern Division, Ganges Canal.

Appendix X.

Daily Aocount of Expenditure on the undermentioned Works of the

Northern Division Ganges Canal during the month of February, 1853.

Pay Bur of Establishment attached to the Northern Division of the Ganges Canal during the month of February, 1853.

Roorkee, 1st March, 1853.

The above men were all paid in my presence.
Appendix X.
Dr. Overseer in Account Current with the Superintendent of the Northern Division of the Ganges Canal for the

(Signed) ———Oerseer.
Roorkee, 1st April, 1853.

Daily Accoont of Expenditure on the undermentioned Works of

Roorkee, 1st April, 1853.
the Northern Division of the Ganges Canal during the month of March, 1853.

Pay Bill of Establishment attached to the Northern Division of the Ganges Canal during the month of March, 1853.

Roorkee, lst April, 1853.

The above men were paid in my presence.

Dami Aocount of Expenditure on the undermentioned Works of the Northern Division Ganges Canal during the month of April, 1853.

Datiy Accoons of Expenditure on the undermentioned Works of the Northern

Division, Ganges Canal, during the month of April, 1853-continued.

$P_{\Delta y}$ Bul of Establishment attached to the Northern Division of the Ganges Canal Works during the month of April, 1853.

Roorkee, 1st May, 1853.

The above men were paid in my presence.
(Signed)
Lieutenaut,

Appendix B.

Appendix Y.

Office Abstract of Overseer———s Accounts for the month of February, 1853.

Ofrioe Abstract of Overseer
's Account for the month of March, 1853.

Office Abstract of Deputy Superintendent ———'s Account for the Month of April, 1853.

, VOL. III.
M
Appendix C.

The Northern Division, Ganges Canal, in Account Current with the Honourable Company for the Month of March, 1853.

The Northern Division, Ganges Caual, in Account Current with the Honourable Company for the Month of April, 1853.

Dis

Appendix E.

Dr. C 4.

Appendix E.

Accoent Book.
Detailed explanation of Debits.

Dr.

Detailed explanation of Debits-continued.

C 4.

Appendis 5.
STORE ACCOUNT-BOOK.

Dr.	M1. Timber Account.											Cr.
1853. Febrasary	To balance , advances to contractors	\ldots	\cdots	\cdots	\ldots		1853. February	By lime account "brick "	\ldots	\ldots	RB. A. P. 5 0 0 1 0 4	
							March ...	i) charcoal account , Solani aqueduct revetments By balance	$\begin{gathered} \cdots \\ \cdots \\ \cdots \end{gathered}$	\ldots	$\begin{array}{ll}\ldots & \cdots \\ \cdots & \cdots \\ \cdots\end{array}$	42 360 14 0
	Total	\ldots		\cdots	1,07,000 00		Total ...				1,07,000 00

appendix c.]

Dr.	M 6.		Iron Account.			\cdots	\cdots	\cdots	Cr.		
$\begin{array}{c\|} \hline 1853 . \\ \text { March ... } \end{array}$	To balance ... " 2,000 maunds of bar iron, at $\overline{8}$ rs. \quad... ", 1,000 maunds of angle iron at 9 rs.... Total ...	$\begin{array}{ccc} \text { Rs. } & \text { s. } & \text { r. } \\ \ldots & \ldots, 0 \\ 16,000 & 0 & 0 \\ 9,000 & 0 & 0 \\ \hline \end{array}$		1853. February	By ordinary repairs account $\begin{gathered}\text { By balance }\end{gathered}$				\cdots	${ }_{\text {RS. }}^{4 .}{ }_{4}$	A. $\begin{gathered}\text { P. } \\ 8 \\ 8 \\ 8 \\ 8\end{gathered}$
		34,000 00		Total	34,000	00

Appendix G.
MISCELLANEOUS ACCOUNTS-BOOK.

Dr N 1. Reqular Establishment.											Cr.
1853. February	To Overseer , Overbeer \qquad \qquad 's bill for eatablishment s " ,, Deputy Superintendent Total \qquad \qquad \qquad \qquad '" bill for establishment ...	$\begin{array}{ccc}\text { RS. } & \text { A. } & \text { P. } \\ \mathbf{1 0} & \mathbf{0} & \\ \text { P }\end{array}$	1853. February March ... April ...	By current bill No. 2 of 1853, for establishment						...$\cdots$$\cdots$	Re. A. P. 10 0 0 10 0 0 41 0 0
March ... April		10 0 41 0					"	"			
		6100				Total				\cdots	6100

Dr.	S.		Sundrues Account.						Cr.		
1853. March . February	To ficctuating establishment ", well at aqueduct for workpeople ,, fluctaating establishment ", cost (contract) of workpeople's house at aqueduct			$\begin{gathered} 1853 . \\ \text { April ... } \end{gathered}$	By Solani earthen aqueduct	\cdots	\cdots	...	\ldots		
April ...		180 20 2,113									
	Total $\quad .$.	$\begin{array}{llll}2,873 & 5 & 4\end{array}$			\ldots	2,873	54

Appendix H .

vol. III.

For the Quarter ending 30th April, 1853.
NORTHERN DIVISION, GANGES CANAL.
Bill No. 15.
The Honourable Company
Dr.
To the following expenditure incurred in the partial construction of an earthen aqueduct with masonry revetments, \&c., across the Solani Valley during the quarter ending 30th April, 1853; being part of the project of the Ganges Canal.—Vide Colonel Cautley's Report of 1845, pages 25, 31, and revised estimate of 1850, pages 64-67.

Averages covering the above Expenditure.

Channel.

$5,00,966$ cubic feet excavation from 15 th mile, filled into ballast-wagons, propelled along railway, by horses, an average distance of 8,540 feet, and emptied by side of rail, at $3 r s .13 a .2 p$. per 1,000 cubic feet
$3,99,300$ ditto from 16 th ditto, filled ditto, and propelled ditto, ditto, 11,555 ditto, ditto, at 5 rs .3 a .2 p . per ditto
$2,02,112$ ditto, ditto, propelled along rail, by men, ditto, ditto, 7,000 ditto, at 3 rs . 11 a. per ditto ...
11,02,378 ditto in last three items, spread in channel, at $1 r .0 a .9 p$. per ditto ... Giving aggregate rates as follow:-
15 th mile, work by horses, at $4 r s .13 a .11 p$. per 1,000 cubic feet. 16th ditto, ditto, at 6 rs. 3 a. 11 p . per ditto.
Ditto, ditto, work by men, at 4 rs. $11 a .9 p$. per ditto.
1,94,525 ditto excavation from Roorkee banks, filled into ballast-wagons, propelled along railway, by men, an average distance of 5,000 feet, and emptied by side of rail, at $2 r s .13 a .10 p$ per 1,000 cubic feet
$\left|\begin{array}{rrr}\text { us. } & \text { A. } & \text { r. } \\ 1,917 & 0 & 8 \\ 2,076 & 4 & 3 \\ 745 & 2 & 6 \\ 1,154 & 10 & 3\end{array}\right|$

1,94,525 ditto in last item, spread in channel, at 1 rs .0 a .3 p . per ditto ... Giving an aggregate rate of $3 r s .14 a .1 p$. per 1,000 cubic feet.
16,250 cubic feet of surplus sand removed fron top of aqueduct arches, and deposited in channel, at 3 rs. $13 a$. per 1,000 cubic feet
$1,35,000$ ditto of earth, already deposited in channel, spread, at 2 rs. 0 a. 11 p . per ditto. N.B.-This is, generally speaking, shallow digging, finishing off bed of canal
$2,90,828$ ditto of earth, already deposited in channel, puddled, at $3 r s .3 a .5 p$. per 1,000 cubic feet

Embantiments.

$21,30,206$ cubic feet excavation, from 15 th mile, filled into ballast-wagons, propelled along railway by horses an average distance of 10,760 feet, and emptied by side of rail at 5 rs .0 a .8 p . per 1,000 cubic feet \ldots.
7,55,758 ditto, from 16 th ditto, ditto, 10,775 feet, and ditto, ditto, at 4 rs. 12 a. $2 p$. per 1,000 cubic feet
28,85,964 ditto in last two items spread, at $1 r$. $6 a$. per ditto Giving aggregate rates as follow:-

15 th mile, work by horses, 6 rs. $6 a .8 p$. per 1,000 cubic feet.
16 th ditto, ditto, $6 r s .2 a .2 p$ ditto
14,250 ditto, ditto (virgin soil), carried in baskets a distance of 150 feet up a height of 25 feet, and spread in embankments, at 3 rs .0 a .10 p . per 1,000 cubic feet
12,195 ditto, ditto, from 19th ditto, filled into ballast-wagons, propelled along railway by men an average distance of 5,000 feet, and emptied by side of rail, at $3 \mathrm{rs} .3 a .2 p$. per 1,000 culic feet

10,738	6	2
3,598	0	3
3,970	1	4

2,89,074 ditto, ditto, from Roorkce banks, ditto, ditto, 4,720 feet, and ditto, ditto, at $2 r$ s. $14 a .7 p$. per 1,000 cubic feet
3,01,269 ditto in last two items spread, at 1 rs. $10 a .2 p$. per ditto Giving aggregate rates as follow :-

19 th mile, work by men, 4 rs .13 a .4 p . per 1,000 cubic feet. Roorkee banks, ditto, 4 rs. 8 a .9 p . ditto.
$1,07,875$ ditto earth, formerly deposited in channel, removed to embankments, and spread at $2 r s .0$ a. $6 p$. per 1,000 cubic feet
50,340 ditto, ditto, in embankments, spread a distance of 200 feet, at $3 r s .1$ a. $7 p$. per ditto
Cost of ramming earth round quadrantal and other steps
17,807 cubic feet of excavation, preparatory to dressing slopes, at Rs. A. $\mathbf{~ r}$. 3 rs. per 1,000 cubic feet
22,800 square feet slopes dressed, at $2 r s .3$ a. per $\dddot{1,000} \ldots \ldots(\underset{\text { square feet }}{\ldots}$

Carried forward

THE GANGES CANAL.
Remaris on the Rates.

Last Quarter.
5 rs. 9 a. 10 p. per 1,000 cubic feet $-9,400$ feet distance.
$\begin{aligned} & \text { 1st August, } 1852 . \\ & 5 \text { rs. } 2 \text { a. per } 1,000 \\ & \text { cub. ft.- } 11,540 \\ & \text { feet distance. } \end{aligned}$
3 rs. 11 a. $3 p$. per 1,000 cubic feet $-7,215$ feet dis tance.

12 a. $2 p$. рет 1,000 cubic feet.

1st May, 1852.
4 rs. 2 a. per 1,000 cubic feet.

1st August, 1852.
15rs. 3a. per 100 cubic feet.

1st May, 1852.
15 rs. 3 a. $2 p$. per 100 cubic feet.

3 r s. $13 a .2 p$. per 1,000 cubic ft . $-8,540$ feet distance.
$5 r s .3 a .2 p$. per 1,000 cubic ft. -11,555 feet distance.

3 rs. 11 a. per 1,000 cubic ft. - 7,000 feet distance.

1 rs. 0 a. 9 p. per 1,000 cubic ft.

2 rs. 13 a. 10 p. per 1,000 cubic feet- $5,000 \mathrm{ft}$. distance.

3 rs. 3 a. 5 p. per 1,000 cubic ft.

16 rs. 1 a. $2 p$. per 100 cubic feet.

16 rs. 11 a. $9 p$. per 100 cubic feet.

Earthwork in channel in ballast-wagons drawn by horses appears this quarter at about its natural rate. Last quarter, owing to the number of horses in training, and consequently not effective for work, the rate was very high. But if comparison is made with the rate of the quarter ending 31st July, due allowance for distance being afforded at 8 a. per 1,000 feet, which is perhaps fair, the present rate brought forward will be shown to be correct enough. This will appear better by comparison of the 16 th mile rate as per margin. The two rates are here shown to be almost identical.
Same work in ballast-wagons propelled by men, 16 th mile.

Spreading earth in channel. This rise in rate is due, I believe, to an expression of my opinion that the spreaders under Mr. Parker actually had some slight ground of complaint that too much work was exacted from them. Certain it is, that they were leaving our works; and I therefore, without giving in to them immediately, requested Mr. Parker to relax his rate as early as he could consistently with the maintenance of discipline. Reference to old back rates and consideration of the fact that we are not in a position to be able to quarrel with our workmen will, I am sure, bear me out in this.
Earthwork in channel in ballast-wagons propelled by men from lhoorkee banks agrees very well with same work from the 16 th mile, due regard being had to difference of distance.
Puddling earth already deposited. Comparison of rates here is little more than a form. Distances from which earth already deposited is moved, and facilities for watering that earth, vary so much in different localities that great varietics of rates must always exist.
It is not supposed necessary to notice rates of earthwork further.
Plain masonry cannot properly be compared with the plain and rulble masonry of last quarter, the rate of which, moreover, was then presumed to be incorrect. If, however, the comparison is made with the plain masonry of cattle ghats, \&c., of the quarter ending 31st July, 1852, and it is considered that a rise in the price of bricks should affect the cost of 100 cubic feet of masonry to the extent of $14 a .5 p$., the rates compared will agree within $3 p$. of each other. Great part of this quarter's masonry is in bricking-out.
Arch masonry under steps is here compared with that in cattle ghats, than which, after making allowance for rise in price of bricks, it is $10 a .2 p$. per 100 cubic feet dearer. The difference is due entirely to the different quantity of materials used, the rate of labour in the present instance being one-sixth lower than before.

(Signed)
A. G. Goodwrs, Lieutenant, Executive Engineer, Northern Division, Ganges Canal Works.
To the Secretary, Military Board, Fort William.
I declare upon my honour that the sum charged in this bill has been duly expended for the purpose set forth.
(Signed) A. G. Goodwys, Lieutenant, Executive Engineer, Northern Division, Ganges Canal Works.

Abstract by the Director of Works, showing the Amount expended and the Quantity of Work executed on the Solani Earthen Aqueduct up the 30th April, 1853.

Comparing the rates with those of the revised estimate, we have, -

On the 30 th April, 1853, the average rate of the earthwork was increased by a further sum of 3 a. 8 p. per 1,000 cubic feet, and the rate is now 4t a above that of the estimate; but the rates of the period under review are fair.

On masonry the average rate has also increased $2 a$. per cubic foot beyond that exhibited on the 31 st January, 1853, but there is still a considerable margin when comparing it with the estimate.

I beg to refer the Board to Captain Goodwyu's remarks and comparisons with former quarters which meet with my approval, and to recommend that the bill be sanctioned.

(Signed) P. T. Cadtley, Lieut.-Colonel, Director Ganges Canal Works.

For the Quarter ending 30th April, 1853.

NORTHERN DIVISION GANGES CANAL.

Survey Report and Statement of Measurements of Certain Works executed in the Partial Construction of an Earthen Aqueduct with Masonry Revetments across the Solani Valley during the Quarter ending 30th April, 1853.

Description.	Measurements.						Masonry.				Pukka Plaster.
	L.	B.	D.	Area.	No.	Contents.	Plain.	Step.	Arch.	Miscellaneous.	
Brought forward...... Ogees and revetments \qquad	$\cdots{ }^{\prime \prime}$	-..."	- ...'	…	\cdots	\cdots	3,11,106	1,08,342	48,242	1,27,008	
	3150	6	\cdots	1,969.00	\ldots						
	$\begin{array}{r}8 \\ \hline 680\end{array}$	93	\cdots	74.00 161.00	\cdots						
	6460	0	\cdots	161.00 135.00	\cdots						
	6480	0 0 21	...	135.00	\cdots						
	6480	111	...	1,242.00	\ldots						
	6480	0 3	-•'	162.00	...						
	6470	0	...	$162 \cdot 00$...						
	6460	0	. ${ }^{\text {a }}$	$161 \cdot 00$...						
	6460	$\begin{array}{ll}0 & 74 \\ 1 & 2\end{array}$	\cdots	404.00 753.00	...						
	6460	12	**	$753 \cdot 00$...						
				5,223•00	39	19,586					
	350 0	2	25,795					
	3500	2,450					
	5120	. ${ }^{\text {P }}$	17,579					
	1000	...	\cdots	-	\ldots	667					
	40	2	24	-				
	540	...	\cdots	...	\cdots	486					
Area, as above.......................				5,223 $\cdot 00$	4	1,306	\cdots	\cdots	66,587
	350	1510	\ldots	5,223-00	\ldots	5,542					
	3200	110	3,520					
	320 0	38	\ldots	1,173					
	100	$\begin{array}{lll}9 & 4\end{array}$	2	187					
	1700	1510	2,692					
	1700	08	114					
	320 0	70	\cdots	2,240					
	1040	284	\cdots	2,946					
	100	6	658					
	1040	110	**	*.	\ldots	572					
	1040	$\begin{array}{ll}1 & 10 \\ 8\end{array}$	2,097					
	1040	82	*'	. ${ }^{\text {P }}$	\cdots	849					
	8350	7-10	\cdots	5,928	...	\cdots	. ${ }^{\prime}$. ${ }^{\text {a }}$	23,896
	1,261 0	$16 \cdot 75$...	21,122					
	957 0	$5 \cdot 00$	\cdots	4,785					
	2,274 0	6.87	\ldots	15,622					
	4,565.75	4	18,263					
							\cdots	...	\cdots	\cdots	65,720
Grand total contents......	\cdots	3,11,106	1,08,342	48,242	1,27,008	1,56,203

EXCAVATION, \&c.

Measurements.					Earthwork.			Remarks.
L.	B.	D.	No.	Contente.	Channel.	Banks.	Filling Vaults.	
Brought forward'	6,14,091	17,05,058	3,10,057	
145	280	260	\ldots	3,05,560				
90	100	260	\ldots	23,400				
768	480	19	\ldots	64,512				
231	140	160	\ldots	51,744				
50	$\begin{array}{ll}45 & 0 \\ 45 & 0\end{array}$	110	\ldots	24,750				
167 49	45 49 49	$\begin{array}{rr}5 & 6 \\ 17 & 0\end{array}$	\cdots	41,332 40,817				
620	${ }_{6} 6$	18 5	\ldots	22,837				
50	${ }_{\text {area. }} 12$.	96	\ldots	5,700				
50		1790		8,950				
				3,89,602	$\left\{\begin{array}{l}70,900 \\ 62,612\end{array}\right.$	$2,56,090$	\ldots	From 16th ditto, ditto. Ditto, ditto, by rail by men, 7,200 feet distance.
253	470	20	\cdots	23,782				
106	470	16	\ldots	7,473				
353 106	47 46		\ldots	1,20,285				
144	130	$\begin{array}{ll}7 & 0 \\ 5 & 3\end{array}$...	34,132 9,828				
				1,95,500	58,000	1,37,500	...	From Roorkee banks, ditto, ditto, 4,200 feet distance.
555		30	\cdots	16,650				
205	50	156	\ldots	15,887				
205	90	50	\ldots	9,225				
200	200	30	\ldots	12,000				
1,212	100	163	\ldots	1,97,556				
1,212 $\mathbf{3 0}$	$\begin{array}{ll}10 \\ 15 & 0 \\ 15\end{array}$	4 16 16	\cdots	52,116 7,200				
150	560	56	\ldots	46,200				
17	540	99	\cdots	8,951				
50	area.	1,357 0	...	67,850				
					...	4,33,635	\cdots	From 15th mile, in horsed wegons, 11,900 feet.
30		99	\ldots	15,795				
213	50 10 10	50	\cdots	53,250				
40	10 50		\ldots	2,000 20				
230 1,330	$\begin{array}{ll}50 & 0 \\ 50 & 0\end{array}$	$\begin{array}{ll}1 & \\ 2 & 0\end{array}$	20,125 $1,33,000$				
130	100	166	\ldots	1,21,450				
50	${ }_{\text {10, }}^{10} 0$	740 0	\cdots	2,600 $\mathbf{3 7} 000$				
	area.		..	37,000				From 16th ditto, ditto. Ditto, ditto, by rail by men, 7,200 feet distance.
				2,85,220	$\left\{\begin{array}{r} 1,01,600 \\ 86,500 \end{array}\right.$	79,565	$17,555$	
252		$\begin{array}{ll} 2 & 0 \\ 0 & 0 \\ 8 & 0 \\ 6 & 0.815 \end{array}$	$\begin{aligned} & \ldots \\ & \cdots \\ & \cdots \\ & \cdots \end{aligned}$	17,136				
252				28,224				
250 100	$\begin{array}{ll}22 & 0 \\ 30 & 0\end{array}$			44,000 $\mathbf{2 0 , 6 2 5}$				
						65,485	...	From Roorkee banks, ditto, ditto, 5,400 feet distance.
				1,09,985	54,500			
543 543		23	\cdots	1,09,957				
543 477		36	...	5,702				
477	50	$\begin{array}{rr}21 & 0 \\ 5 & 0\end{array}$	\cdots	50,085 7,155				
477	30 160	$\begin{array}{ll}5 & 0 \\ 2 & 0\end{array}$	\ldots	7,155 6,400				
557	119	170	\ldots	1,11,261				
Carried forward..		\cdots	2,90,560	10,48,203	26,67,333	3,27,612	

(Signed) A. G. Goodwys, Lieutenant,
Executive Engineer, Northern Division, Ganges .Canal Works.

Abstract of the foregoing.

Description.	Masonry.				Pukka Plaster.	Earthwork.				
	Plain.	Step.	Arch.	Miscel- ladeous.		By Rail.				
						15th Mile. Horses.	16 th Mile.		19th Mile. Men.	Roorkee Banks. Men.
							Horses.	Men.		
Revetments	Cubic feet. 2,91,372	Cubic Fect. 1,08,342	Cubic Feet. $48,242$	Cubic Feet.	$\begin{aligned} & \text { Sq. Feet. } \\ & \text { 1,56,203* } \end{aligned}$	Cuble Feet. 1,24,668	Cuble Feet. 2,26,215	Cable Feet.	Cubic Feet. 10,800	Cubic Feat. $1,822$
Embankment steps.........		1,27,008	-	\ldots
Pedestals of Lions	19,734	...	\ldots					
Channel	\ldots	5,00,966	3,99,300	2,02,112		1,94,525
Embankments...............	21,30,206	7,55,758	...	12,195	2,89,074
Totals	3,11,106	1,08,342	48,242	1,27,008	1,56,203	27,55,840	13,81,273	2,02,112	22,995	4,85,421

Abstract of the foregoing-continued.

Deacription.	Earthwork.							
	16th Mile.	Spreading Earth already deposited.	Removing from Channel.	Puddling.	Removing Sand from Top of Aqueduct	Foundations.	Preparatory to dressing Slopes.	Dressing Slopes.
Revetments \qquad Embankment steps Pedestals of Lions \qquad Channel \qquad Embankmenta \qquad	Cuble Feet. -•• - 0 14,250	$\begin{gathered} \hline \text { Cablc Feet. } \\ \ldots \\ \ldots \\ 1,35,000 \\ 50,340 \end{gathered}$	$\begin{gathered} \text { Cubic Fret. } \\ \mathbf{6 6 , 3 5 6} \\ \ldots \\ \ldots \\ 1,07,875 \end{gathered}$	Cublc Feet. *** - $=$ 2,90,828 **	Cubic Feet. ... \ldots 16,250 ...	$\left\{\begin{array}{c} \left.\begin{array}{c} \text { Cubic Feet. } \\ \ldots \\ 34,224 \\ \ldots \\ \ldots \end{array}\right\} \end{array}\right.$	Cubic Feet. $\begin{gathered} \ldots \\ \ldots \\ \ldots(7,807 \end{gathered}$	Square Feet. $22,800$
Totals	14,250	1,85,340	1,74,231	2,90,828	16,250	34,224	17,807	22,800

Earth rammed round quadrantal and other steps, and below eaplanade of cattle ghat.
Revetment broken up for foundations of lions. Lions commenced.
Clearance of argillaceous deposit on revetment.
Parapets of Roorkee cattle ghats commenced.
Earthen centering for main arch work dressed.
Earth excesated below canal bed for plastering, and reflled.
(Signed) A. G. Goodwry, Lieutenant,
Executive Engineer, Northern Division, Ganges Canal Works.
Roorkee, 1st May, 1853.

* Of this quantity $1,18,171$ aquare feet are completely flnished. The remainder is unpolished.

APPENDIX D.

General Instructions for the Executive Officers of the Third, Fourth, Fifth, and Sixth Divisions of the Ganges Canal Works.

The establishment authorized for the executive supervision of each of the new divisions of works on the European establishment

Ganges Canal is as follows:-

1. Executive officer and two assistant executives. for supervision.
Overseers, as they may be required, for the supervision of work; but only one in the first instance.
2. The Schedule given below* shows the limit of the permanent establishment as sanctioned by Ultimatelimit Government, but it will be understood that a portion only will be required at present, and that no addition or mentablish- as sancto the numbers and salaries specified in the following paragraphs will be made without the special sanction tioned. of the director of the works.
3. English Office.-An accountant and one English writer will suffice in the first instance. Their English office, salaries must depend on the nature of their qualifications. To secure the services of known and efficient ${ }_{{ }_{q}}^{\text {as now red. }}$ nemen, the full salaries of 100 rupees and 45 rupees, respectively, may be given ; but considering how small the expenditure and how simple the accounts will be for some time, I would prefer, in the first instance, that a young man be taken on trial as an accountant on a salary of from 60 to 80 rupees per mensem.
4. Native Office.-The undermentioned native office establishment may be entertained at once.

Native offlee, as now required.

And permission to employ, with detached parties on works under overseers, one moossuddie at 10 rupees, one chupprassy at ${ }_{5} 5$ rupecs, and a guard proportionate to the stores and treasure in his charge.

Treasury
offlice, not now required.
Establishment for works.

Establish-

 ment with detached assistants and overseers.First business of the executive oflleer.

A longitudinal line of levels to be first carefully laid down.
-

These levels to be ultimately referred to that of the Myароог regulating bridge.
5. Tae Treasdry Office and Gjard will not at first be required.
6. Works.-The executive engineer may entertain at once, one mistry smith, one ditto carpenter, one ditto bricklayer, at salaries not exceeding 15 rupees, for employment in the workshops; at 12 rupees, to superintend the building of the workshops and pukka bench-marks.
7. Each assistant or overseer, detached, to have a mootsuddie at 10 rupees, a chupprassy at 5 rupees, and a guard of four Burkundauzes, of whom one would receive 5 rupees, the others 4 rupees per mensem.
8. The first business of the executive officer will be to obtain by his own labour and that of his assistants and native levellers accurate information of the surface levels of the country throughout his division.

9. He will first select two masonry bench-marks, respectively at the upper and lower extremities of his district, as near the probable line of canal as possible, using for this purpose some distinguishable existing object not liable to displacement, or, in the absence of such, he will build a masonry pillar of the form noted in the margin. The relative levels of these two points will be accurately ascertained by several trials, and the level of the upper one will be provisionally assumed as the zero, or starting point, for the general levels of the division.
10. In the foregoing paragraph, I use the word "provisionally," because the levels of all the divisions must ultimately be referred to the sill of the Myapoor regulating bridge; and the executive engineer of the Munglour division, who has already referred his levels to the work above mentioned, as a zero point, will be instructed to fix the level of bench-marks at the south-eastern extremity of his division on both sides of the Kulec Nuddee, and to communicate these levels respectively to the executive officers of the Bolundshahur and Futtchgurh divisions, who, having referred their levels to the same standard, will communicate the result to the next in succession: and so on.
11. In connection with the work above described, the executive engineer will take, or cause to be taken, a combined series of longitudinal and cross levels over the whole of his district. The proximity of these lines to each other will be regulated by the nature of the country (whether undulating, flat, or having a uniform slope), but should be such as to mark clearly the principal water-shed lines, as well as all the lines of drainage.
12. The results of this examination would be best exhibited on a map, drawn to a scale (say 4 inches to a mile), that will admit of each level point being shown, with its height (referred to the Myapoor zero) written in figures.
Connected
series of cross
levels to be
lajd down.

Mode of exhibiting the result of the levels.

Speciflc object of the inquiry.
vi view The object for which this information is required, and which, therefore, should be kept steadily in well as for the irrigation channels or rajbuhas for distributing the water to the villages.
Principal considerations in electing the lines of main canal.
14. In selecting the line for the main canal, the following points will be carefully considered:-
I. To keep the canal as much as possible on the highest ridge, so as to facilitate the distribution of water for irrigation, and not to interfere with the drainage of the country.
II. To ensure a depth of cutting which will provide earth sufficient for the requisite embankments, and keep the canal nearly, if not entirely, " within soil."
III. To keep the canal as much as possible in straight lines, and when a curve is unavoidable, that it should be of not less than two miles radius.

Selection of lines for Majbuhas.
15. In selecting lines for rajbuhas, the first only of these considerations need be observed. The level of the water in these channels should be as a general rule slightly above that of the adjacent lands, and their general direction would of course be regulated by the position of the villages to be irrigated.

16. In carrying on the series of levels above described, it is very important that Bench-marks permanent bench-marks should be established at short intervals, and where wells, tombs or to be estasmall religious buildings may not be met with in localities suitable for this purpose, it will short interbe advisable to build small blocks of masonry of the size and form noted in the margin, vala. and numbered. It is evident that the utility of beuch-marks will depend, in a great degree, on the facility and certainty of their identification, the means of which must therefore be carefully provided by the surveying officer.
17. When an existing building may be used as a bench-mark, a sketch of the building should be made in the Field Book with such a degree of accuracy and detail as would enable another person to recognize the object without difficulty. The part of the building on which the levelling stave is placed should be that least exposed to injury, and should be carefully marked in the sketch.
18. To obviate mistakes from indifferent drawing or the general similarity of wells, suttees, \&c., the dimensions of one or two principal parts of the building should be accurately measured, and noted in the sketch. As an additional precaution, it would also be advisable to take compass-bearings from the benchmarks, to two or three conspicuous objects within sight.
19. Where pillars of masonry are built as bench-marks, the numbers (which will be cut in 3 -inch figures Means to be on the plaster in a niche or recess of the pillar) would afford a sure means of identification; but lest these used for the numbers should be defaced, it would also be expedient to fix the position of the bench-mark, by bearings to of the pillars. conspicuous objects, as above described. The levelling stave should be placed both on the top of the pillar and on the plinth, and the level of both these surfaces should be recorded, as a precaution in the event of one of them being injured.
20. Bench-marks, fixed with the care and precautions above prescribed, will be exceedingly useful for Uses to be future reference, and as a check on the native levellers, whose work will always begin and close upon these made of the fixed points, and may be received with confidence, when it is found to agree with a standard with which the operat8rs were not previously acquainted.
21. During the examination of the country, the attention of the executive officers, and assistants, should Inquiries rebe directed to ascertain the localities and quality of building materials to be obtained in the district, such as $\begin{aligned} & \text { garding build- } \\ & \text { materinls, }\end{aligned}$ kunkur, or marle, fit for the preparation of cements, block-kunkur suitable for building purposes, and brick, \&c. earth, \&c. The value of different kinds of kunkur for cement should be tested by experiment, and the result reported for the information of the director.
22. After the main line of canal shall have been approximately fixed, arrangements may be entered into Arrangefor the manufacture of bricks on that line, wherever fuel may be available; the quantity being regulated by ments for a rough calculation of the requirements, according to the printed estimates, and with reference to the bridges, \&c., required on rajbuhas.

23. When the direction of the main line has been definitely decided on, the central, or mesial line, should be laid down with the greatest care, and marked with small masonry pillars, at distances of not less than onethird of a mile apart, so as to be easily visible, one from the other; and in cases of change of direction, a pillar would be built at each of the tangential points, and a third at the intersection of the tangents.
24. The pillars built for the above purpose (and which will serve as points Description of of reference for levels as well as for direction) will be circular in plan, and of dimensions as per margin. Those at the intersection of tangents will be of a different pattern; thus:
vol. m.

Existing buildings used
as benchas benchmarks to be
accurately noted in the Field Book. Precautions againet mistakes.

Bridge sites to be determined upon; and chokies built.

Estimate of enrthwork to be prepared.

Workshops to be established, and how employed.

Nature of building for the workshops.
Levelling and surveying instruments, how to be provided.

Certain indente to be submitted.

Bills for balaries of cstablishment, how prepared.
25. The sites of the bridges and other masonry works would then be determined in communication with the director, by whom specific instructions would be issued, regarding the details of their construction.
26. It will generally be advisable to construct the first and second class chokies, as soon as the line of canal and sites of bridges, have been determined.
27. The exact length and longitudinal section of the main and branch lines of canal being determined, the quantity of earth-work will be calculated, and an estimate will be framed and submitted to the director, of the time probably required to complete the excavation, with reference to the resources of the country and facility of procuring contractors. The divector will then communicate his orders, regarding the period for commencing the work.
28. In the schedule of Establishment, in paragraphs 1 and 2, are included one European overseer, a blacksmith, and a carpenter mistry. The object of the early entertainment of these men, is the establishment of a workshop, at or near the place, where the executive officer may fix his head-quarters. The blacksmith's department would be employed in the manufacture of tools, such as mamooties (fourahs), pickaxes, felling axes, \&c., and the carpenters in the preparation of brick-moulds, soorkhi mallets, cubic measures for lime and soorkhi, 10 feet and 5 feet rods, and wheelbarrows, \&c.
29. The building for the workshops may be on the same general plan as that sanctioned for the Munglour division, of which I inclose a ground-plan and elevation (Appendix A.), and for which an estimate must be submitted.
30. The executive officer will be provided, in the first instance, with one large levelling instrument, and as many smaller ones, up to six, as can be obtained, previous to the arrival of those commissioned from Europe. He will also be supplied with a theodolite, if such can be obtained from the magazines; otherwise, he will have to wait for those ordered from home. Some pairs of levelling rods (probably as many as may be required) will be forwarded from the director's office.
31. For iron measuring chains, and as many mamooties, felling axes, \&cc., as are likely to be required in carrying on the levelling operations, indents on the nearest magazine will be prepared by the executive officer, and transmitted through the director's office, for sanction.
32. Bills for establishment salaries will be submitted monthly in the usual form, the general aythority being quoted in the heading, and the special authority for any change or increase of salary being separately stated. The usual form of attestation will be appended to the bill, which must also be accompanied by acquittance rolls, in English and Persian, signed or sealed by each of the establishment in the receipt of a salary amounting to 10 rupees a month or upwards. The names as well as the designations of all the establishment receiving 10 rupees a month or upwards, must also be entered in the body of the bill.

Expenditure

 on works to be charged quarterly.Form of the quarterly bille.

Mesaurement of work and survey report.
Detail of the quarterly billa.
The rates to be deduced boná fide.
33. All expenditure on works will be charged and sul,mitted quarterly, agreeably to the appended copy of "Rules" (Appendix B.) promulgated by Government, North-Western Provinces, and communicated to me in Mr. Sccretary Thornton's letter No. 500 A. of the 25th August, 1847.
34. The first bills will consist of little more than the contingent expenses of surveying, but when there may be occasion to charge for work admitting of measurement, the bill will be prepared in the usual departmental form, and will consist of a statement of expenditure on labour and materials (separately) for each work, an exhibition of the rates at which each description of work was actually exccuted, and a comparison of the actual and estimated rates.
35. To each bill will be appended a statement of measurements of the work charged for, and a survey report in the usual form.
36. The whole quarterly expenditure, though included in one bill, will be shown in separate items specifying the several descriptions of work on which it was incurred. The precise detail of this sub-division, for each principal work, will be prescribed by the director.
37. In preparing the comparison of actual and estimated rates, the executive officer will bear in mind, that it is the object of Government, that the rates exhibited should be those of the actual cost of each description of work. The heading of this part of the bill will be worded accordingly, and the attestation, on honour, will be held to apply to the rates as well as the amounts charged.
38. The " comparison of rates" will be followed by an "explanation of differences," in all cases where Explanation there may be a discrepancy, one way or the other, between the estimated and actual rates.
39. The expenditure on materials will be brought forward in the manner described in clause IV. and Expenditure in paragraphs 5, 6, and 7 of clause III. of the annexed "Rules."
on materials.
40. The accounts of expenditure kept by the executive officer and required by him from his sub-Accounts to ordinates must be closed monthly, and will be prepared with special reference to the system of accounts be kent by th embodied in the Agra Government "Rules." officer.
41. The forms prescribed by the Military Board for the accounts of the Department of Public Works, Forms of acare appended to this communication (Appendix C.), but a modification of this system has been generally georibed bre- the adopted in the Canal Department.
42. The "Day Book," as prescribed, is intended to be sent in daily to the executive officer, and this Board.
Modification would be attended with much advantage, where extensive works are being carried on at one spot under the of theee forms immediate supervision of the executive officer. As, however, it generally happens in the Canal Department $\begin{aligned} & \text { adopted in the } \\ & \text { Canal De- }\end{aligned}$ that the expenditure is incurred by assistants or overseers at different localities, and not under the imme- partment. diate supervision of the executive officer, whose duty it is to control the whole, it has been found convenient in practice to combine all the information contained in the "Day Book," in a monthly statement, the form of which is appended. (See Appendix D.)
43. The only real difference between this method and that of the Department of Public Works is, that Difference the expenditure is reported, in the one case daily, in the other monthly, to the executive officer; the degree between the of detail in both plans may be the same.
44. The precise form in which the daily expenditure shall be reported to the executive officer is left, in The accounts some measure, to his own discretion, under the proviso that the accounts of all his subordinates shall be to containall susceptible of easy check, and that they, as well as the books prepared from them in the executive engineer's tion required. office, shall contain all the details of information expected or required by the Military Board or by Government.
45. A list of periodical papers, to be transmitted to the director's office, is subjoined. (See Ap- List of peripendix E.)
46. Whenever it may be necessary to take up ground for canal purposes, or to cut down trees, or Rules forcomremove wells or buildings, interfering with the line of canal, the proprietors of such land, trees, or buildings pensation. will be entitled to compensation, which will be awarded in strict accordance with the rules laid down in Mr. Secretary Thornton's letter to the Sudder Board of Revenue, No. 360, of 27th January, 1845, a copy of which forms Appendix F.
47. In accordance with the instructions of his Honour the Lieutenant-Governor, North-Western Assistance Provinces, communicated to the Sudder Board of Revenue, North-Western Provinces, under date the from the civil 25th Angust, 1847, the revenue officers of the districts through which the Ganges Canal will pass have districts. been apprised of the approaching commencement of the work, and have been directed to afford every necessary assistance to the officers of the canal in their progress through the country. It must be understood, however, that the executive engineers are not to rely upon the assistance of the civil officers to procure labour or carriage for the works. These will be generally obtainable by good management, and by a system of regular payment and considerate treatment of the parties employed.
48. The executive engineers will impress upon all their subordinates the necessity of treating with the Due respect to consideration due to their official functions the native officers of the revenue and police departments with whom they may be brought in contact in the discharge of their public duties. 49. In the execution of work, it is advisable to adopt a system of contracts, whenever sach can be
obtained on reasonalle terms. The works most easily susceptible of contract are-the excavation of a cut 49. In the execution of work, it is advisable to adopt a system of contracts, whenever sach can be
obtained om reasonalle terms. The works most easily susceptille of contract are-the excavation of a cut or formation of an embankment, of a given section; manufacture and carriage of bricks, lime, and soorkhi; quarrying and carrying blocks of kunkur, \&c.
50. When hired labour is employed, that supplied by the neighbouring villages, and paid daily, is Remarksupon generally the most economical; but when larger parties are required than the neighbourhood can supply, or hired labour,
when any particular work is in progress (such as block-sinking), which requires practised workmen, it then becomes necessary to employ labourers (beldars) on monthly pay, and to enforce strictly a system of task work.

Organization and deseription of beldars

Collective preferable to individus tasks.

Terms on which alisence on the plea of sickne.scan be granted.

Indents for stationery.

Decisions un references on different vubjects.
51. The beldars should be divided into mudduts, or squads of thirty to forty men each, under charge of a tindal, who will receive 6 rupees per mensem, and who will be generally held responsible for the conduct of his men, and may be punished for their remissness, at the same time that his authority is strictly upheld,
52. It will be generally found advisable to assign collective rather than individual tasks, i.e., to measure out a certain portion of work to a whole squad, and not to each beldar. On this plan, each man has a direct interest in seeing that the others work, and in preventing truancy and skulking.
53. When large parties of monthly paid labourers are employed, it is important that the terms on which absence on the plea of sickness can be allowed should be well understood. The method in use in the northern division of the Ganges Canal is recommended for general adoption. It is as follows:-

Hospital accommodation is provided for the workpeople in the event of sickness. Men who have been injured on the works receive full pay during their hospital treatment. The other hospital patients receive half-pay. Men who absent themselves from work under the plea of sickness, but do not go into hospital, receive no pay while non-effective.
54. The executive engineers of the Ganges Canal are supplied with stationery from the Government stores, on which an indent, prepared agreeably to the accompanying form (see Appendix G.), should be submitted through the director's office, as soon as possible after the 1st July of each year.
55. To prevent the necessity of future references, I subjoin (Appendix H.) a list of questions which have been referred from time to time by executive officers, and the authoritative decisions thereon, in parallel columns.

W. E. Baker, Major.

Roorkee, September 30th, 1847.
Director, Ganges Canal Works.

Appendix B.
 Rules for keeping the Accounts on the Grand Ganges Canal.

1. The works shall be executed agreeably to Major Cautley's designs. No deviation from the principles which have been sanctioned by Government to be made without the previous approval of the Military Goard. The director will be competent to authorize such modifications as may be necessary to the efficiency of the work in progress, reporting the same immediately to the Military Board.
2. When money is required for the execution of worka, application will be made by the executive engineer, throagh the director, to the accountant, North-Western Provinces, who will issue an assignment for the amount.
3. For the Northern Division.
(i.) The executive engineer of Works will submit to the director a bill for three (3) monthe' work prepared in the usual departmental form, i.e., exhibiting quantities, rates, and amounts, and accompanied by detailed measurements of work done.
(ii.) The materials used to be charged for on rates furnished by the executive officer of Materials.
(iii.) When the rates of work differ from the estimated rates, full explanations to be given at the foot of bills in the usual manner.
(iv.) The bills after careful examination by the director will be submitted with his remarks to the Military Board,
(v.) The executive officer, whose duty will be to collect and prepare materials, and to take charge of bullocks, carts, \&c., will submit quarterly to the director, for transmission to the Military Board, a detailed statement of expenditure and results in each item of his charge, including carts and bullocks, accompanied by such explanations as may appear to be necessary.
(vi.) To the above statement will be appended a balance sheet, showing on one side the actual expenditurc on each item, and on the other the amounts received from the executive engineer of works, and the stock in hand.
(vii.) He will also submit a list deduced from the above-mentioned accounts of prices of materials, bullock hire, \&c., which he proposes to charge, during the ensuing quarter, to the executive engineer, to whom it will be communicated by the director, if approved.
(viii.) The executive officer for materials will get advances from the executive engineer of works, and will write of per contra the value of materiats supplied.

APPENDIX A.

General Plan of Workshops
FOR THE

GANGES CANAL.

Front Elevation.

Londnin Smith. Hder id COAG. Corrnlull
4. In the smaller divisions it may be expedient from motives of economy to unite in one officer the functions of the two allowed to the 1st division.
(ii.) The executive engineer of a smaller division will therefore keep and submit quarterly to the director distinct accounts of works and materials as laid down for the two officers of the 1st division.
5. On completion of any work extending through more than one quarter, the director will draw out and submit to the Military Board a comparison of its actual cost with that estimated, at the same time reporting on the quality of work, \&c., \&c. Every work commenced and completed within the quarter will, by the director, be separately reported on, as to its quality, \&c.
6. General accounts of expenditure on the canal works of all descriptions will be kept in the director's office, and balance sheets will be submitted to Government, quarterly or half-yearly, as may be required.
J. Thonnton, Sec. to Gout. N. W. Provinces.

Abstract

Appendix C. Forms to be observed by Barrack Masters in keeping Accounts; approved and adopted by the Military Board, on the 1st May, 1821.

As an uniform system of accounts should be adhered to throughout the barrack department, the following forms are selected as the most convenient, with reference to the documents required to accompany bills for work executed.

Each district barrack master must keep five books, viz., No. 1, a Journal or Day Book; No. 2, an Abstract of Daily Cash Payments ; No. 3, an Abstract of the Daily Expenditure of Materials and Labour ; No. 4, a Stock Book ; and No. 5, a Book for Advances in the shape of an Account Current.

In Book No. 1, all the disbursements of every description must be inserted each day, under its proper head; when a payment is made for general purposes and not for any particular building, it must be entered under that head.

Book No. 2 is intended for easy reference. The horizontal columns show at one glance of the eye the amount expended each day on the several works, as well as the total expense of the day. The vertical columns, when added up, show at once the total sum expended on any work up to any fixed date, as well as the total expenditure. This book by being kept up regularly will be found to save much time.

Book No. 3 is intended to record the labour and materials expended each day on different parts of the same buildings. For this purpose several pages or half pages must be allotted to one building, viz., half a page for the foundations, one or more pages for the superstructure, roof, floor, cornice, \&c., \&c. It affords the means of adding up separately and readily the expenditure on each part of a building, and when this book is accurately kept, nothing is more simple than the making out the bill at the completion of the work. All that is required is to take the total of each description of work, and the bill is ready.

No. 4 is to show readily what materials have been purchased, the average cost of them, and their appropriation.
No. 5 is the same description of book, but has reference to individuals instead of materials; it is a personal account current with each contractor, merchant, agent, or head mechanic, showing what advances have been made and what has been received for the money, or what is due. Each account with a native must be balanced monthly, and the man's signature affixed, or his acknowledgment of its being correct tacked to it. With Europeans it may be sufficient to balance the account quarterly.

The book No. 3 cannot be kept accurately unless a sufficient number of lallahs or mohurrurs are kept at the works to see what labour and materials are used, and to send to the office a daily report in writing, which should be filed as soon as it has been entered in the books.

Experience has shown that the first expense of keeping up a sufficient number of writers is amply compensated by the advantages of an early adjustment of accounts, and it will be readily seen that it is much easier to write a few lines in the books daily, than to have intricate accounts to make out when any work is finished; and in the event of any sudden removal or any accident occurring to a barrack master, his successor will easily continue the accounts and adjust all claims. A set of books of the prescribed form must be kept at each post or atation, and when this cannot be done in the English language it must be done in Persian or Bengalee.

When money is sent to a native agent or overseer to carry on works at an outpost, he must be ordered to send regular monthly accounts, and to show by the attestation of the parties concerned, that all advances on account have been regularly balanced and adjusted for the past month. Receipts in duplicate for all advances must be regularly executed.

No. 1.-Form of Day Book.

No. 2.-Fonm of Cash Abstract of Daily Cash Payments.

No. 3.-Figured Abstract of Daily Cash Expenditure of Labour and Materials.

No. 4.-Form of Stock Book.

$\begin{gathered} 1815 . \\ \text { January } \end{gathered}$	- bricks, received from Ramjaun, brick contractor, at - per -	-	1815. February - March	- bricks issued for the quarter guard of the 9th Regiment Native Infantry, at - per - ... Balance in store	-
March -	- maunds of lime, received from Mr. A.B., at-per 100 maunds	-	$\left\lvert\, \begin{array}{cc} \text { May } & - \\ \text { May } & - \\ \text { June } & 1 \end{array}\right.$	- maunds lime issued for whitewashing Artillery Barracks, at per 100 maunds - maunds lime despatched \cdot. Captain A. B., for Commercial Buildings at Malda, at per 100 maunds ... Balance in store	-
March -	- ferrahs of Kooah received from C. D., contractor, at per 100 ferrabs ...	-	April	- ferrahs of Kooah issued for the Cantonment Road, at per 100 ferrahs ... Balance in store	-
April -	- saul tirnbers, received, \&c., \&c.	-	June	— saul timbers issued, \&c. Balance in store	-

No. 5.-Form of a Book for Advances in the shape of an Account Current.

THE GANGES CANAL.

GANGES CANAL WORKS

DIVISION.
Abstract of Workmen employed and Materials used on the undermentioned Works during the Month of -1847.

Appendix E.
List of Periodical Papers.
Monthly.
Statement of correspondence.
List of letters despatched by executive engineer.
Estimate of funds required by executive engineer for the current and five ensuing months.
Report on disposal of assistants.
Progress report.
Current expense bill.
Statement of assignments received and realized during month.

Quarterly.

Return of warrant and non-commissioned officers' bill for expenditure on works, with abstracts of quantity completed, \&c.

Half-Yearuy.

General sayer account, to accountant North-Western Provinces, and director.

Yearly.

Indent for atationery.

Return of magazine tools.
Return of levelling and surveying instrumente.
Descriptive roll and confidential report of overseers.
Return of oncovenanted servants.

GANGES CANAL WORKS

DIVISION.

Progness Report on the undermentioned Works during the Month of 1847.

No. 1-Regulating Bridge.

16,992 cubic feet of excavation done in making roadway across arches
$\stackrel{\text { L. }}{177} \times \stackrel{\text { n. }}{32} \times{ }^{\text {D. }}=16,992$ cubic ft.

No. 2.-Excavation in Canal for Roadway.
Earth excavated $584 \cdot 14$ long $\times 50$ broad $\times 5$ deep $=1,39,035$ cubic feet.
No. 3.-Excavation for Channel of Earthen Aqueduct.
Earth excavated 4,590•64 long $\times 50$ broad $\times 3$ deep $=6,88,596$ cubic feet.
No. 4.—Brick Kiln.
30,000 pukka bricks taken out of kiln $. . . \quad 12^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{2 \prime \prime}^{\prime \prime}$ 83,308 peela \quad, $\quad . . \quad . . \quad . . \quad . . \quad . . . \quad .$.

No. 5.-Bridge Centres.
Centres, planks, \&c., all taken down and sent into store, and planks all stacked at shop.
No. 6.-Excavation for Embankment.
Earth excavated 4, 353 long $\times 25$ broad $\times 4$ deep $=4,35,300$ cubic feet.

GANGES CANAL WORKS
DIVISION.
Abstract of Expenditure during the Month of 1847.

GANGES CANAL ——_ DIVISION.

Account Current of Eippenditure for the Month of - 1847.
Dr.

Appendix F.

No. 360.

From J. Thonnton, Esq., Secretary to the Govermment, N. W. P., to H. M. Elliot, Esq., Secretary to the Sudder Board of Revenue, N. W. P., Agra, dated the 27th January, 1845.

Revenue Dept.

Sin,
With reference to the correspondence noted below,* I am desired to request that you will inform the Board that the Lieutenant-Governor, on the occasion of his late visit to Hurdwar, found that some difficulty and delay were still experienced in adjusting the amount of compensation for property required for the Ganges Canal. Advantage was taken of the presence on the spot of all the local revenue and of the Canal officers to come to a better understanding on the subject.
2. The great object to be attained is promptitude in the adjustment of all claims of this nature, and security that payment for property taken, or suspension of demand for land occupied, be not delayed when the right of the clainant has once been recognized.
3. These ends will generally be best attained by entrusting the award of compensation to the canal officers who are on the spot; but it is found that, with regard to property in land, those officers bave difficulty in ascertaining the principles on which remission of the Government demand on the land is to be adjusted, or the persons who are entitled to claim the benefit of compensation on account of the land occupied by the Goverament. With respect, therefore, to this class of claims, the agency of the collector must still be employed, and due provision made for fixing on the right party the responsibility for any delay which may occur.
4. The Lieutenant-Governor, therefore, proposes the following rules for adoption, and requests that they may be communicated, through the commissioner and director of the canals, to those whom they may concern, unless the Board are aware of any objections to their imniediate adoption.
5. The canal officers shall settle all compensation regarding houses, trees, crops, wells, and buildings, and shall pay the money from their own treasury, taking receipts as vouchers and acquittances from the owners. The revenue officers are always at liberty to represent any case in which they find the compensation awarded to be inadequate, or the proceeding to have been conducted in any objectionable way.
6. The collector shall settle compensation regarding land, however occupied,-whether by crops or gardens; whether cultivated, culturable, or barren; whether khalisah or lakhuraj. In such cases, the canal officer, as soon as he has laid down his line (dagh bel), should give certificates to the tehseeldar and collector, stating the quantity of land he requires and which he has marked off, and the date on which he requires that it be vacated. This date should generally lee that on which all the standing crops will be cut at the termination of the current Fussily year. It will then rest with the tehseeldar immediately to ascertain and report to the collector how and by whom the land is occupied, and on what terms remission of jumma or compensation should be given, under existing rules. It will rest with the collector to provide that the terms be definitively settled by the time when the land is required by the canal officers, or as soon after as possible, and that no unnecessary demand is made on the zumeendars for the land thus taken. The collector, when reporting to the commissioner his proposed remission for the confirmation of Government, will furnish a copy of his report to the director of the canal, in order that an opportunity may be afforded to that officer of offering any remarks on the transaction that may occur to him as affecting the charge on his works.

[^3]7. The remission ultimately sanctioned by the Government will be notified to the director of the canal at the same time as to the accountant revenue department.
8. The Lieutenant-Governor requests that the Board will impress upon the commissioner and the director of the canal the importance of paying attention to the regular and punctual performance of this duty. I am, \&c.,
Agra, the 27th January, 1845.
J. Thonnton, Secretary to Government, North-Western Provinces.

Appendix G.

Indent for Stattonery required for the use of the Executive Engineer of the Division of the Ganges Canal, -_, 1st July, 18-.

Appendix H.

Authoritative decisions on certain points submitted by Executive Officers.

Question. Lieutenant Strachey's letter No. 53 of 20th June, 1843. Inquires how he is to obtain the cost of packingcases sent with stores from magazines, how it is to be debited, and what is to be done with the articles themselves? Also, in case he is directed to sell them, how the amount should be charged in his accounts?-Answer. Secretary Military Board's letter No. 1,939, of 22 nd July, 1843, states "that it would probably be the best plan to sell the packing-cases in question, if they are not required in the department; and Lieutenant Strachey might indemnify himself for any loss in the sale by submitting a bill for the difference, and the proceeds might be brought forward in the periodical account current." "Lieutenant Strachey can be furnished from the Board's office with the rates of any articles supplied to him from the Ordnance Department, whenever applied for."

The plan generally adopted is to return to the magazine all the packing-cases, \&c., received, and to submit a bill for their value, supported by the magazine officer's receipt.

Question. Lieutenant Strachey's letter No. 49 of 30th May, 1843. Understands that Major Cautley had proposed to Government the employment of public cattle on the Ganges Canal works, for the conveyance of materials; such a measure being undoubtedly a great saving, requests that he may be informed of the decision of Government on the subject.Answer. Commissary-General's letter No. 1,173, dated 9th June, 1843, protests against the proposed measure, as being most inexpedient at any time. "Wc have no carts to give, but if our elephants and camels are so employed, there would be few or none amongst them with sound backs in the course of a month."
"The objection applies to a particular employment, and holds good not only now but at all times."
The above view was concurred in by the Honourable the Lieutenant-Governor, North-Western Province, vide secretary's letter No. 3,706 of 15th August, 1843.

Question. Major Baker's letter No. 389 of 1st April, 1845, inquires, first, "whether in the prosecution of public works it be necessary that the undermentioned documents should be engrossed on stamped paper, viz., contracts or agreements for excavation of earth, manufacture of brick, or supply of materials, and security bonds for the repayment of Government money advanced on the above account; secondly, whether in the event of the documents above mentioned being enyrossed on other than stamped paper of the prescribed value, the executive engineer can, in a civil court, enforce the fulfilment of a contract, or recover the amount of security, when justly forfeited; or, in other words, thirdly, whether the gencral exemption appended to Regulation X. of 1829 be intended to apply to the Department Public Works? - Answer. The Secretary to the Government North-Western Provinces in his letter No. 2166 of 1845, dated 23rd May, 1845, to the Military Board states in reply "that the exemption which follows article 12, Schedule A. Regulation X. of 1829 (as copied below") is, in his Honour's opinion, entirely applicable to the documents mentioned by Captain Luker. His Honour therefore conceives that there is no necessity for executing such documents on stamped paper.

Question. The Superintendent of Canals, having granted to commissioned officers, in the canal department, temporary leave of absence on private affairs.-Answer. The Board, in their secretary's letter, No. 3,565 of 7th September, 1847, ruled "that the only pleas, under which a superintending engineer can, under existing orders, grant leave, are first on medical certificate, and in such case the party should furnish the requisite certificate, and secondly, on urgent private affairs, in which case the superintending engineer must satisfy himself of the validity of the plea before granting it."

Question. Major Baker's letter No. 1, 172 of 10th April, 1847, inquires the power vested' in him to grant leave of absence to uncovenanted subordinates in the canal department.-Answen. Secretary Military Board's letter No. 1,600, dated 25th June, 1847, transmits copy of a letter No. 2,448 of 10 th idem, with annexures from Mr. Secretary Thornton, "communicating the power vested in you by Government to grant leave of absence not exceeding one month in each year, over and above the occasional holidays, whenever you are of opinion that the indulgence can be granted without detriment to the public service, and is merited by the good conduct of the applicant."

Question. Lieutenant Strachey's letter No. 105, dated 24th October, 1845, asks for permission to advance to Assistant Overseer Sergeant Johnstone the sum of 200 rupees to assist him in building himself a lungalow at Roorkee.Answer. The Secretary Military Board's letter No. 6,223 of the 16 th December, 1845 , states, "that an advance of 200 rupees requested by Sergeant Johnstone, to enable hin to build a house at Roorkee, is quite inadmissible."

Question. Lientenant Smith's office and private carriage having been seized for military purposes and a complaint made.-Answer. The Honourable the Lieutenant-Governor replied, in Mr. Secretary Thornton's letter, No. 4,853 of 11th November, 1846, that "when absolutely required for the march of troops, the seizure of carriage is authorized by Regulation XI. of 1806, Section 3."

Question. Lieutenant Turnbul's letter No. 225, dated 10th June, 1847, requests that sanction may be obtained, for placing the whole of his bricks under charge of the civil village powers, as he is anxious to remove his establishment.Answer. The Commissioner of Meernt, in reply (No. 257 of 14th June, 1847,) states that he has directed the collectors of Mcerut, Mozuffirnuggur, and Suharumpoor, "to provide for the protection of the bricks by making the zumindars of the villages where they are collected responsible for their safe custody. The village chokidars ought likewise to be ordered to look after the heaps, and see that they be not pilfered by the inhabitants of the neighbourhood."

[^4]Question. Reference having been made regarding a statement of conditions of service of beldars, \&c., employed on the Ganges Canal Works.-Answer. The Honourable the Lieutenant-Governor decided (in Mr. Secretary Thornton's letter, No. 617 A. of 1847), dated 29th September, 1847, that he could "only refer you to Sections 5 and 6 Regulation VII. of 1819, and to the constructions of the Nizamut Adawlut noted below,* which have reference to that enactment. By the first two, you will see that European British subjects are held not to be liable for prosecution as defendants under the regulation in question, though they may sue as complainants; and by the last you will perceive that there must be either a stipulated term of service, or a contract for specific work, to render artisans and other workmen liable under Section 5, of the regulation."
"The Lieutenant-Governor does not consider that there would be any difficulty in your having a simple form of agreement drawn up and lithographed, to which every labourer employed on the canal should be required to subscribe. In this contract the forfeiture of arrears for a certain period might be made the stipulated penalty of absconding without due notice. The conditions of such an engagement would necessarily become in a short time generally known."

In accordance with the above suggestion, an agreement paper has been drawn up and adopted in the northern division, a copy of which is hereto annexed.

Copies of the sections and constructions above referred to are also attached.

Form of Agreement Paper.

Sections 5 and 6 of Regulation VIT. of 1819.
V. All persons who may voluntarily engage to serve as workmen, of any description, for a stipulated term, or who may voluntarily contract for the performance of any specific work, and who, without good and sufficient cause, shall wilfully quit the service so engaged for, before the expiration of the term agreed upon, or shall wilfully neglect to perform the work so contracted for, shall be deemed guilty of a misdemeanour; and on conviction, before a magistrate or joint magistrate, shall be liable to a sentence of imprisonment, not exceeding one month. The magistrate or joint magistrate may likewise require the persons so eonvicted to complete their stipulated term of service, or to perform the work contracted for, if it appear just and proper to require the same; and any subsequent conviction of wilful neglect to comply with such requisition shall be punishable by a further sentence of imprisonment, not exceeding two months.
VI.-Clause First.-The provisions of the foregoing section are also declared applicable to domestic servants, who may engage to serve for any fixed term, or during the performance of any specific service, or though no such engagements have been enfered into, may be employed from month to month, and without good and sufficient cause, shall wilfully quit the service of their employer before the expiration of the fixed term, or before the completion of the stipulated service, or with respect to monthly servants, without giving previous notice, for a period not less than fifteen days.

Second.-In like manner, no master, or other person, employing a servant for a fixed term, or for a apecific service, or from month to month, shall be at liberty, without good and sufficient cause, to discharge such servant against his will before the expiration of the fixed term, or the completion of the specified service; or, with respect to servants employed from month to month, without giving previous warning of the intended discharge for a period of at least fifteen days, or paying his wages for that period.

[^5]Thind.-It shall be the duty of the magistrate or joint magistrate, on application made to him upon the stamp paper prescribed in section 18, of Regulatiou I., 1814 (viz., bearing a stamp of eight annas), to enfurce the provisions of the above clause, by causing payment to any servant who may be discharged in opposition thereto, of a sum equal to half a month's wages, in addition to any arrear of wages which may be duc to lim at the time of his discharge; or if the servant have been engaged for a fixed term, or for a specific service, by causing payment to be made to him of such sum as may appear fully adequate to any loss sustained by him from being discharged before the time agreed upon.

Fourth. - Provided, however, that no servant shall be entitled to recover more than his arrear of wages when he may he discharged for misconduct, proved to the satisfaction of the magistrate or joint magistrate, and appearing sufficient to warrant his discharge; nor shall any workman or servant be liable to punishment under the provisions of this regulation, when it may be proved, to the satisfaction of the magistrate or joint magistrate, that his quitting the service of his employer, without previous notice, or before the expiration of a stipulated term, or without having completed the performance of any work contracted for, was occasioned by gross maltreatment, or by non-payment of wages due, or by any other cause which may appear to the magistrate or joint magistrate sufficient to justify or excuse the act complained of.
VII.--The whole of the sentences which may be passed by a magistrate or joint magistrate under any part of this regulation will, of course, be open to the regular control of the Court of Circuit of the division, according to the general rules in force on this subject.

CONSTRUCTIONS OF THE NIZAMU'Г ADAWLUT.

To tee Bareilly Court of Circut.

Dated the 25th May, 1821.
I am directed by the Court of Nizamut Adawlut to acknowledge the receipt of a letter from you, dated 11 th instant.*

2nd.-In reply, I am directed to communicate to you the opinion of the Court, that the rule contained in clause 3, section 6, Regulation VII., 1819, cannot be considered applicable to European British subjects, and that, consequently, under the general regulations, an award by a magistrate (even though a justice of the peace), of the nature alluded to in the latter part of the first paragraph of your letter, is unauthorized and illegal.

3rd.-You are, of course, at liberty to consult the Advocate-General as to how far he may consider such a decision legal under the Act of Parliament, to interpret which does not fall within the province of this Court.

4th.-It is at the same time obvious to remark, that from a conviction of a British subject by a magistrate, in his capacity of justice of the peace, under 53rd George III., cap. 155, \dagger the appeal is not to a Court of Circuit, but to the Supreme Court in Calcutta.

To the Barelly Court of Circuit.

Dated the 20th July, 1821.
I am directed by the Court of Nizamut Adawlut to acknowledge the receipt of a letter from you under date the 2nd instant, together with its enclosure from the magistrate of Zillah Moradabad, dated the 27 th ultimo. \ddagger

2nd.-The rule contained in clause 3, section 6, Reg. VII. of 1819, being clearly not applicable to European British subjects as defendants, and it appearing from Mr. Halhed's letter to your Court that he is in possession of a copy of my letter to your address, bearing date the 25th May last, the Court are not aware of the necessity of any further orders on the subject of Mr. Halhed's enclosure in your letter above acknowledged. With respect to the query occurring in the second and at the conclusion of the third paragraph of Mr. Halhed's letter, it is obvious that clause 4, eection 16, of the above-cited Regulation, cannot be acted upon at all against such masters or persons as may not be liable to the Regulation and subject to the magistrate's authority; at the same time, that against such servants as are liable and subject, the Regulation may be acted upon, even in favour of those very masters who are exempted from being made defendants.

To the Acting Magistrate of Zillah Sylhet.
Dated the 29th April, 1825.
The Court of Nizamut Adawlut have had before them your letter, under date the 16 th instant, § requesting to be informed whether the second punishment directed by section 5, Regulation VII., 1819, in cases of workmen neglecting to finish their work, should be considered final and conclusive, or whether the magistrate is at liberty to repeat such punishment until the work is performed.

2nd.-In reply, I am desired to communicate to you the opinion of the Court, that the sentence of two months' imprisonment, prescribed in the section above quoted, is intended as punishment for wilful neglect to perform work

[^6]§ No. 384, 1819, Regulation VII., section 5.
vol. ill .
undertaken, and not as a means of compelling the performance of it; consequently, that the magistrates are not competent to repeat the punishment of two months' imprisonment or to take any further measures towards compelling an actual performance of the work engaged for.

The following queries* were submitted by the magistrate of the Twenty-four Pergumnahs, to which the replies in juxtaposition were given:-

Questions. 1st.-Can workmen, such as mistrees, mooches, or other artisans, be brought within the meaning of the enactment quoted, supposing that they have taken advances from their employers and agreed to work for the same, without any stipulution as to the precise term or specification of the job that they are to perform?
$\geq n d .-B y$ what magistrate are cases, under the above-mentioned provisions, cognizable: the magistrate of the district wherein the agreement was entered into, or that of the district wherein the delinquents reside, or to which they may have decamped?

Answers. 1st.-There must be a stipulated term of service, or a contract for the performance of specific work, to render section 5, Regulation VII., 1819, applicable to the cases alluded to.

2nd.-Such cases may be prosecuted either in the district in which the agreement was executed, or in that in which the defendant resides.

Calcutta Court, 18th March: Western Court, 27th May, 1842.

* No. 1329, 1819, Regulation VII., sections 5 and 6.

A P P E N DIX E.

Report on the State of the Ganges Canal Works, at about the Period when their General Direction was transferred from Major W. E. Baker to Major P. T. Cautley.

Camp, Gurhmookteesur, 11 th Jrenuary, 1848.
The space occupied by the Myapoor Dam and the escape channel in rear of it, was once excavated to the proper depth, but has since received considerable deposits of gravel and sand. From the space in front of the dam and regulating bridge, a vast quantity of soil has been removed; but the lower 4 or 5 feet of excavation not having been completed before the rains of 1845 , has been purposely left, under the impression that if this space were now excavated, it would soon be refilled with silt similarly to that in rear of the dam. The cause of this deposit appears to be the sudden change from the rapid fall above the dam to the diminished slope below it. It is probable that some inconvenience will always attend this unavoidable disposition of the fall, but it will doubtless be felt in a far less degree than at present, when the projected uniform slope from the Pyree Ghat to the dam shall be carried out. The excavation is completed at the site of the regulating bridge, and the portion of canal channel in rear of that work, left by Lieut. Strachey, is now being cleared out. The Bochna Nulla has been deepened to suit the level of the works.
2. The foundations and floor of the Myapoor Dam have been completed, and a portion of the east and west abutments has also been built. The piers of the dam and the attached sluice-work are purposely deferred until near the period when they are likely to be required to retain the canal supply. The deviations from the original design for this work are as follow :-

Cross foundations, comecting the front and rear curtain walls, have been added under every fourth pier, and the floor has been made of stone, instead of brick on edge, with reference to the heavy boulders which will be annually washed over it during floods. The edges of the floor are made with chisel-dressed stone, the remainder is formed of smooth surfaces of broken boulders carefully fitted together and grouted in.

The Myapoor regulating bridge has been founded, the floor and piers built, the arches turned, and the spandril walls completed to level of crown of the extrados of the arches. The deviations from the original design for this work, are as follow:-The foundations of the piers have been carried down to the same depth as those of the front and rear curtain walls. The length of the piers has been increased 8 feet; the cutwaters, both up and down stream, having been built beyond the floor instend of on it. A stoue floor similar to that of the dam has been substituted for the brick comter-arches, as proposed, and the cutwaters of the piers have been built of dressed stone. The reason for increasing the length of the piers is to allow more room for stowing the sluice planks or slecpers that will be employed to close the bays; the weight and number of these being so great as to preclude the possibility of their being frequently removed to a store-room. It is proposed that sluice-gates should be used instend of sleepers for closing the waterways; that they should be from 2^{\prime} to 3^{\prime} in depth, and of varying thickness to resist the pressure at different depths; and that they should be worked by cast-iron crabl capstans fixel on the piers. The increased length of the piers will admit of this arrangement being adopted, without curtailing the intended width of the roadway. The ghat steps on both the up-stream flanks of this bridge are completed very nearly as designed. The Bochna inlet is completed, but with considerable deviations from the design. The width of waterway was reduced from

50 to 20 feet, the latter dimension having been considered sufficient, after further acquaintance with this little torrent. The overfall was at first built by Lieut. Strachey as a perpendicular drop, semicircular in plan; but it was found that the floor, though faced with the largest stones procurable, was unable to withstand the impost of boulders, \&c., falling vertically $7 \frac{3}{4}$ feet, and the form of the overfall was subsequently converted into an ogee by Lieut. Yule.

The Bochna bridge is completed as designed. The masonry revetments connecting the Bochna inlet, the regulating bridge and the dam, are completed to their full height, and are now being plastered. The Bythuk wall is completed on the same design on which it was begun in Major Cautley's time, but will perhaps require some modification to suit the ghat steps. The ghat, including the revetment, the descent from the upper to the lower terrace, and the long line of steps for bathing, is completed-except that the last-mentioned steps are not yet faced with dressed stone, for which funds were wanting. The Fukeer's revetment is completed in two portions, with a terrace between, at the level of the lower terrace of the ghat. This arrangement was adopted to save masonry, as the mean thickness of the wall must have been much increased, had not the height been divided into two portions. The first-class choki at Myapoor is completed with no material difference from the design.
3. The Lounda Lana Walla inlet is left for the present. The Kunkhul drainage inlet, enumerated in the priuted report among the works of the Northern Division, but not included in the estimate, has been built; but as it is not desirable at present that the waters discharged by it should be delivered into the canal, they are conducted across the channel between embankments, as a temporary arrangement. A bridge on the old road between the towns of Kunkhul and Jowallapoor near the Ranikooa, has been conceded by the Government of the North-Western Provinces to the inhabitants of those towns, and is now in course of construction. The bridge will be built of three arches, according to the general design, except that curtain walls and a floor will be added to the foundations, which rest on compact boulders and gravel, and that the abutments will be considerably strengthened. These foundations and the massive parts of the abutments will be built of boulders (which abound on the spot) and of pukka cement. The foundations of this work are now in progress. The site of the Jowallapoor bridge has been shifted from opposite the old tuhseel to a spot preferred by the inhabitants about a quarter of a mile lower down. The state of progress of this work is much the same as that of the Kunkhul bridge, which it will resemble in every respect. The boulders for its construction are not found on the spot, but have been brought from a short distance. The foundations will rest on good clay. The construction of the Ranipoor dam is in progress. The excavations are almost, if not quite completed, and materials for building are collected. The boulders for the massive parts of the foundations have been brought three or four miles. To obviate the difficulty of obtaining water for this work, as well as for the bridges of Kunkhul and Jowallapoor (the springs throughout this tract of country being very dcep and scanty), arrangements have been made to bring a small stream down the canal. A cunette has been excavated for this along the centre of the channel, and galleries (supported by sheet planking) have been driven under the bars left for the communications of the country across the canal.
4. The excavation of the canal channel between Myapoor and the Ranipoor Rao was completed before Major Cautley relinquished the direction of the works; but the banks and slopes, which had cut into deep ravines, have been repaired and grassed, and an arrangement has been adopted whereby I hope that the lower slopes will be protected from further material injury, until the canal is opened, when, of course, it must

be superseded lyy some other device. The drainage of the surface a, b, may be without difficulty thrown to the rear, but that of b, c, d, e, must either be absorbed or must find its way to the bottom of the canal.

The absorbing process will only be effectual during light rain, and the means used to assist it, viz., making a slight edging at d, has frequently the effect of holding up a body of water, sufficient, when it does find vent, to cut out a large ravine. The method adopted, and which certainly answered well during the last rainy season, was to form open spouts or channels of masonry down the slopes d, e, at the lowest points, and to conduct to these points the drainage of the surface b, c, d, by means of a small drain excavated at c. The masonry spouts are made of inferior materials and with slight dimensions, as they are not intended to be permanent.
5. Between the Ranipoor Rao and Peeran Kulleeur, nothing has been done beyond a fresh reconnoissance of the line, with a view to avoiding the deep digging at Ghur. I have satisfied myself that this may be effected by dividing the double falls of Dhunowri into two, but I have not yet the data for calculating what would be the difference of cost of the respective lines.
6. Though the Rutmoo Dam is not yet commenced, I have considered carefully how it might be possible to prevent the dam from throwing a large sheet of backwater up the valley of that river. The only method which has suggested itself to me is that of a double dam (one in the alignement of cach bank) comected by a small tunnel under the bottom of the canal. During floods both dams would be thrown open, and the tunnel would be closed to prevent its being choked or blown up. At ordinary times, the dams being planked up, would retain the canal supply, and the tunnel would carry off the leakage through the upper dam, and the natural stream of the Rutmoo.
7. The deep digging of Peeran Kulleeur is only partially commenced at the south end, as it has been determined to convey the excavated earth by a rail to form the Solani embankments, and the neccssary ironwork has not yet been received from Calcutta, though daily expected. The line of canal has however been partly laid down, and is being extended to the Rutmoo ; in the valley of which there will be excavation and embankments on which to employ surplus labourers, until the rail shall be formed.
8. In connection with the Peeran Kulleeur digging, I would record a suggestion which may possibly be of use hereafter. In forming the Solani embankments, it is certainly advisable that each successive layer of earth should be abundantly watered. In the part already formed, this object has been effected (at a considerable expense) by means of pumps and a fire-engine working in pukka wells. But as the level of water in the Rutmoo is higher than that of the canal bottom in the valley of the Solani, it may be found practicable to lead water from the former river in pipes or in an open channel, through the Peeran Kulleeur hill to the Solani embankments. I have not worked out the details of this scheme nor estimated its cost; but I have little doubt that it would be found both more efficient and more economical than the present system.
9. The earthen portion of the Solani aqueduct has been commenced. The soil in the valley of the Solani, east of the river, having been found on examination to be of good quality to a depth of from 2 to 4 feet below the surface, it was determined to obtain earth from side cuttings, and to dispose it in a uniform stratum about 3 feet thick over the proposed bottom of the canal (150 feet wide). Each layer of earth of $6^{\prime \prime}$ thick was well watered and rammed. To this work was afterwards added from extra excavations a raised mound, 20 feet wide at top, along the centre of the canal. Its upper level is that of the canal hottom at the east side of the valley, but it has a slope to the south-west of 1 in 1,200 . This quound is intended for the reception of the rails, which, when once placed, will not required to be shifted, until the whole channel and embankments are raised to their level, i. e., until nearly three-fourths of the work is completed. The earthwork above described has been consolidated by the rains of one season, and has stoorl remarkably well.
10. The Muhewur brick-fields (to be more particularly mentioned hereafter) are intended to supply bricks for the aqueluct and masonry revetments on both sides of the canal; but the kilns being on the right or west bank, the bricks for the east revetment must necessarily cross the earthen mound and the railway. This contingency has been provided for by means of a tunnel under the mound, of height sufficient to admit of the passage of a loaded cart, the sill being at the same time so high as to prevent the passage of drainage water from the upper to the lower side of the aqueduct. As this structure is intended for a temporney
purpose only, it has been built of inferior materials, but of such dimensions as will, in my opinion, ensure its stability for six or seven years.
11. The ironwork of the rails having been expected to arrive soon after the rainy season, a considerable body of labourers, who might otherwise have been dispensed with, were retained with a view to their employment in setting up and working the rails; but when the expected ironwork did not arrive, it became necessary to provide other employment for the working-parties; and, in the absence of more profitable work, a portion of them were set to dig the more sandy strata of the side-cuttings and to throw it up on the line of embankments outside the masonry revetments. I would certainly have preferred that these embankments should consist entirely of tenacious soil, but I hope and believe that a small quantity of sandy earth, enclosed in an immense mass of good clay, and separated from the canal water by a double line of masonry revetment, will not injuriously affect the stability of the work. Had the labourers not been so employed, they must have been discharged, and much further delay must have been incurred in collecting them again after the arrival of the ironwork.
12. I have omitted to notice one piece of earthwork connected with the earthen aqueduct. Before entering on the valley of the Solani, the line of canal crosses a ravine or natural line of drainage flowing from north-west to south-east. It is intended that this drainage should not cross the canal, but that it should be directed into the Solani above the aqueduct, and this object has been effected by throwing a bund across the ravine in the line of the right embankment of the canal, so as to form a pond; and to prevent the water overtopping the bund in heavy rain, an escape channel has been provided, whose sill is three feet below the tup of the bund. This pond was of some assistance in the brick-field, and as it is undergoing improvement by the present operations, will be more useful hereafter.
13. It is calculated that the number of earth waggons required to complete the channel and embankments of the aqueduct in four or five years is 200 -for 100 of which the ironwork has been prepared in Calcutta under the orders of the Military Board. It is supposed that the remainder can be obtained more economically from England. The rail itself is to consist of flat bar iron (a quantity of which is also on its way from Calcutta) laid flat on longitudinal wooden bearings connected at short intervals by cross sleepers, which will also act as chairs. The only iron bars procurable being of various thicknesses, the level will be adjusted by cutting away more or less of the longitudinal sleepers.
14. The form to be adopted for earth-waggons has received the most careful consideration. The arguments for and against tilting-carts may be thus stated:-Tilting-carts would require little labour in unloading, and, by a well-arranged system of diverging branch rails, might be made to convey the earth so near to the reguisite position, as to admit of its being spread with the fowra. On the other hand, the double frame and extra ironwork of a tilting-cart would greatly increase the weight of draught and the cost of construction. 2ndly. The diverging branch rails necessary to give effect to the tilting-carts would require to be frequently shifted, and relaid on different levels and in different positions, a process which, with inexperienced workpeople, and rails of different thickness, would be troublesome, tedious, and expensive. 3rdly. The quantity of rail requisite would be more than doubled.

Considering the balance of the arguments to be against the use of tilting-carts, I propose the following plan, as best suited to our means, and to the comparative cheapness of human labour in India:-Two central lines of rail (for the going and returning waggons) will be laid down on the mound above described, and will probably not require shifting for two or three years. The carts will be of the simplest constructionmere boxes, in fact, firmly framed and fixed to the iron axles. Their sides will open with a hinge to facilitate the unloading, and the bond forming the side will fall over and cover the rail, so as to prevent the earth from falling upon it and clogging it up. The soil will be conveyed in baskets to the required position. The woodwork of fifty carts such as are above described is now nearly ready.
15. Some godowns and a smith's shop will be established at Mahewur (on the east bank of the Solani valley) for the protection of stores, fitting and repairing ironwork, \&c., \&c.
16. The masonry work of the Solani aqueduct was commenced in May, 1846, but the rate of progress has been throughout, and still continues, limited by the supply of bricks. Up to the present time, the
foundations of six piers have been sunk down to their full depth; two more piers are in course of sinking; both abutments, with their flanks or wing walls, are laid down, and are being built preparatory to sinking.
17. The foundation blocks of the piers are 22^{\prime} long, 20^{\prime} wide, and 20^{\prime} deep, and the spaces between them are exactly equalized. The plan and disposition of the abutment blocks has been modified, an addition of 6 feet has been made to the width of the abutment itself, and a corresponding reduction in the flank-the area of the whole foundation remaining nearly the same. A line of curtain blocks along the front and rear of the floor of the aqueduct, and connected with the piers by cross blocks, under the cutwaters, has, under my recommendation, been sanctioned by Government, and eleven of these additional blocks are built, but two only are yet sunk down to their full depth of 20 feet.
18. The curb frames or neemchuks of the large blocks are each made with twelve saul timbers of the usual scantling disposed in this manner (see fig.) In the frames first made, each crossing of the timbers was secured with an iron screw-bolt and nut, but for these we have since substituted trenails, except at the four external angles. In the frames first prepared, the bottoms were not made flush, as it was supposed that the timbers would be needlessly weakened by being halved into each other. The frame therefore rested on two of its opposite sides, the other two remaining hollow. No particular
 rule was observed in laying these frames, and it so happened that those in the line of the first pier were placed with the hollow side out, and the flush sides next to each other: but when the undersinking commenced the inconvenience of this arrangement became apparent. The flush sides being deeper in the soil, supported the block, while the sand constantly flowed in through the hollows, and greatly impeded the progress of sinking. In the next pier, the disposition of the frames was altered-the flush sides being placed outside, and the hollows next to each other-and a marked difference in the rate of progress
 was immediately perceptible; so great, indeed, is this difference, that I believe the sinking of the first pier has cost more than double that of any other.

We have subsequently tried flush frames, without any apparent mischief arising from weakening the timbers-the external pieces only are, however, halved into each other.
19. In all the foundation blocks courses of hoop-iron are laid between the courses of brickwork, and crossing each other at every alternate foot up to the height of 10^{\prime} from the curb-frame.
20. In consequence of the strength of the curb-frames and the use of hoop-iron, the occurrence of cracks in the masonry during the progress of sinking has been very rare, and confined to one or two blocks which had been disturbed by floods breaking through the coffer-dam.
21. The undersinking has been effected almost exclusively with simple machinery worked by common labourers, and without the aid of divers. The jham or tool used for excavation is raised by means of a simple windlass worked with fixed spokes. The saving effected by this method, as compared with that practised by divers, is very considerable, and the progress is certainly not less rapid. For a work of this extent, it would indeed have been difficult, if not impossible, to procure professinnal well-sinkers in sufficient numbers.
22. The soil hitherto passed through by the blocks has been sand, sometimes pure, sometimes largely mixed with clay. The purer the sand, the more rapid has been the progress; but no difficulty beyond delay has been experienced in any soil.
23. There was necessarily a good deal of preliminary excavation and other work connected with the aqueduct, of which few traces now remain. The first foundations laid were those on the right bank of the Solani, under which the principal current then flowed. A space was therefore enclosed in a coffer clam, and two new channels were dug to give the flood a centrical set in the bed of the river.
24. The coffer-dam consisted of two parallel rows of 12^{\prime} and 15^{\prime} kurries, driven close, and framed
 together, the whole being further supported by land ties, at short intervals, attached to piles in the rear. The current of the first floods set longitudinally through the enclosed space, but was checked by cross rows of bullies, the sand washed out being replaced by similar soil enclosed in mat bags. In spite of all precautions, however, the floods broke frequently into and over the coffer-dam, and considerably impeded the work. One of the new channels, too, was completely obliterated, but the final effect of the combined measures has been to set the Solani completely over to its left bank, which it has cut away to a considerable extent.
25. The river wall of the coffer-dam during the last rainy season consisted of one of the aqueduct pier foundations, sunk to its full depth, and surmounted by cuts filled with masses of vitrified brick, and backed hy a sand bund. It is. in rear of the old coffer-dam (the piles of which have been extracted) by the width of half a bay. These precautions effectually excluded the floods of the last year, which, however, were light.
26. The coffer-dam last described has not been dismantled, the work within it remaining to be done can more conveniently be executed during the ensuing rainy season; and in the meantime as much work will be commenced ontside the coffer-dam as there is reasonable hope of completing before the 15th of June.
27. It may here be remarked that the length of the masonry aqueduct is less than the breadth of the river on the line laid down for the canal; and it will, therefore, be necessary on both sides to give deep foundations to that part of the masonry revetment which will be built in the present bed of the river. I would propose that the upstream wall should be founded on blocks and the rest on piles.
28. The direction of the central line of the masonry aqueduct had been determined before my connection with the Ganges Canal, and was necessarily rather oblique to the Solani at that part of its course. It remained for me, however, to fix the exact position of the work on the selected line, and this was done with such reference to the windings of the river as would admit of the stream being brought down perpendicular to the aqueduct by a straight cut from one to two miles in length.
29. It merely remains to allude to the discussions which have arisen regarding the thickness of abutments of the masonry aqueduct. Lieutenant-Colonel Abbott, C.B., when referred to by the GovernorGeneral, expressed an opinion that the abutments, as designed (i.e., 15 feet), were too weak, and that they should have at least 18 feet of thickness, with counterforts. Mr. F. W. Sinms, who was subsequently consulted, recommends 23 feet thickness, with counterforts. The foundations provided by me before this question was mooted will admit of 21 feet thickness of abutments; counterforts, if necessary, may be alded, but I would recommend that they be founded on piles driven in the direction of the thrust. It appears to me, however, that neither Colonel Abbott nor Mr. Simms have properly taken into account the small beight of the piers.
30. The masonry revetments have been commenced west of the Solani, and have made considerable
 progress. Each revetment consists of a double wall supporting a flight of steps. The exterior width of these walls is $15 \frac{1}{2}$ feet, and there is a clear space of 150 feet between them. The upper surface of the revetment will be a fight of steps as in the original design, but the method of supporting them on two circular arches has not been followed, partly with a view of saving the labour involved in so much arch-work, and partly because the proposed method would not easily admit of modification to suit varying heights of revetment. The section adopted consists of two perpendicular walls connected by an arch springing from unequal heights, like that of a flying buttress. The long walls are connected with each other at the bottom, but they have a wide footing, and cross walls are built between them at distances of 15 feet apart.
31. The material used in the revetments is not all of such good quality as that selected for the aqneduct. For the cross walls and for the inner faces of the long walls, some second-class bricks have been used; the exposed surfaces, arches, and steps being made of the best bricks; masses of
vitrified brick or jhama are also extensively used in the construction of the long walls, a bond of brickwork being interposed between every three feet in height of jhama work.
32. The model room-the building of which was completed before I assumed charge of the Ganges Canal-is now being furnished with tables, shelves, and glass cases, to receive the books and philosophical instruments granted to Major Cautley by the Honourable Court of Directors.
33. The workshops and warehouses have been extended all round the interior of the square provided for that purpose in rear of the model room, but still do not afford sufficient accommodation; they are occupied almost exclusively by smiths' forges. The carpenters, having been removed from their allotted quarter, now work in sheds erected both within and without the workshop yard.
34. The possession of an efficient workshop has enabled us, not only to prepare the implements absolutely necessary for carrying on the works, but to introduce many improved means not usually met with in the public works in India, at least in these provinces. Amongst these may be enumerated the whole of the machinery requisite for undersinking the foundation blocks; pumps, which are extensively used not only for watering the earthwork, but for supplying water to masons, \&c.; wheelbarrows and hand-carts, which, on the excavation, on the masonry works, and in the brick fields, have in a great measure superseded the use of baskets; weighing machines, for weighing the loads of firewood, oopla, \&c., brought in for the kilns; frame centres for the revetment arches, and for those of the canal bridges, 55 feet span; woodwork of earth waggons for the railway, \&c. \&c.
35. From the little success that attended Lieutenant Strachey's arrangement for contract bricks, and from the difficulty of obtaining fuel for Hindostani kilns, it soon became apparent that we must depend for our chief supply of this material on our own kilns, burned with wood fuel. A small commencement of the arrangements for this purpose was made in 1846, after the close of the Sutlej campaign, but it was then too late in the season to obtain any satisfactory results. In the cold weather of 1846-47 a number of new kilns were built both at Roorkee and Muhewvr, and considerable quantities of firewood were cut in the forests and carted to the works. During the early part of the season many circumstances combined to render the results of these operations very unsatisfactory. Great pains had been taken to ascertain the method of burning bricks with wood, as practised at Umballa and elsewhere; but our people did not at first get into the way of loading the kilns properly, and this, combined with a long duration of unfavourable weather, and the greenness of the firewood, rendered the operations of the cold weather months almost entirely unprofitable. At the commencement of the hot season, however, a change for the better became apparent; two new descriptions of kiln were tried with better success, and before the setting in of the rains we had turned out about 38 lakhs of serviceable bricks from the English kilns. Early in October of the present season, the brick-making operations were resumed under the supervision of Mr. J. Finn, appointed executive officer for the preparation of materials in the Northern Division.
36. The experience gained in our former unsuccessful operations, and the establishment and workpeople who had been employed in carrying them on, were made available to Mr. Finn, together with a considerable stock of dry firewood, and these advantages, combined with that of Mr. Finn's undistracted attention being given to this branch of the work, have evidently told on the cost and quality of the bricks. Their price, however, is still very high, being for these three months' operations not less than 1,000 rupees per lakh for pukka bricks $2 \frac{1}{2}$ " thick, and 250 rupees for peela bricks, and I fear that, with the presont descriptions of kiln, no material reduction in this price can be looked for. Improvements, however, will doubtless suggest themselves; and a very promising experiment has lately been made with a new kind of kiln, such as is used in Sind, by which it is hoped that a considerable saving both in fuel and labour may be effected. Hindostani kilns are also being established in localities where the appropriate fuel is obtainable within such distance from the Roorkee works as will admit of their being brought in at a reasonable cost. A few of these Hindostani kilns are contracted for by parties on whom Mr. Finn thinks he may depend; the rest are being made by hired labour, and under the supervision of Government servants.
37. The establishment of extensive brick fields at Roorkee and Muhewur has, of course, rendered necessary a great many subordinate arrangements, besides the construction of clamps or kilns, such as the vol. III.
formation of wells for supplying water, the construction of weighing-machines, \&c., and the maintenance of a large establishment of bullocks and carts, with sheds for their accommodation.
38. Great efforts have been made (and with considerable success) to obtain contract carriage for timber, firewood, bricks, lime, \&c.; but even were the extent of available hired carriage greater than it is, it could not be so surely depended upon as to admit of our dispensing with our own establishment of bullocks. The supply of hired carriage must at best be uncertain, and its failure at a critical period might be productive of infinite mischief to the works.
39. In the 35th paragraph I have adverted to the want of success attending our first attempts to burn bricks with wood fuel; but it may be proper to give some further details of these experimental operations, of which the cost was considerable in itself, though small in comparison with the future expenditure. The first method tried at Roorkee was that employed with considerable success by Major Napier, at Umballa; its failure with us, we now, by the light of experience, attribute to three causes: 1st. Using Dank wood, instead of Bubool or other hard wood. 2nd. Using koora, instead of the light refuse of chuppur grass emploged at Umballa, to equalize the surface of the layers of wood. 3rd. Ignorance of the proper management of the fire by means of the flues and the surface covering of ashes. The second method attempted was that described in the 6th part (Vol. III.) of Weale's Quarterly Papers on Civil Engineering, as that practised in Holland, where wood fuel is often used. With us, however, it completely failed: the consumption of wood was greater than in the first experiment, and the result more unsatisfactory. The third experiment was made with a " flame " kiln, such as is used in England with faggots, for which we substituted brushwood cut near the spot. A few good bricks were obtained by this method, but not in such proportion as to warrant a repetition of the experiment. The fourth method was recommended by a native who chanced to be passing through Roorkee and offered to take service as a brick-burner. His plans, with a few exceptions, which did not appear to us very important, was the same as Major Napier's; but he understood the management of the fire, and the produce of his kilns was comparatively good. The fifth method was taught us by men whom we sent for from Benares, and which, I have since heard, is described in the Barrack-Masters' Assistant (of which there is no copy in the canal department). It is less certain than the fourth method, and more dependent on the quality of the wood; but the bricks are less broken, and of a better quality. A sixth method, such as is practised in Sind, has lately been introduced with great promise of success-it is a flame-kiln, but differs in some important respects from that first tried.
40. The brick-making operations of 1846-47 may be considered as experimental. The expenditure was 54,500 rupees, the result 38 lakhs of bricks, or about 1,435 rupees per lakh. During the present season, as far as it has gone, the bricks have cost about 1,000 rupees per lakh, but may perhaps be eventually reduced to an average of 800 rupees per lakh. From this we may deduce that the cost of our experience is about 24,000 rupees, or 3 per cent. on the probable outlay on bricks, supposing that 1,000 lakhs are required.
41. The Roorkee digging has undergone annual repair since my connection with the Ganges Canal, and is now in excellent order. The upper slopes and roadway drain to the outside, and the rain at Roorkee being much less heavy than at Hurdwar, it has not been necessary to provide masonry gutters down the lower slopes, as described in paragraph 4. The slopes have been grassed.
42. From Asufnuggur to the Muhmoodpoor Falls, it has become necessary to modify the longitudinal section first determined upon. This necessity arose partly from an error in the levels (to be adverted to again), and partly because the excavation provided was not sufficient to supply earth for the requisite embankments, and still less so to meet the requisitions of the medical committee. In two places, viz., between Asufnuggur and Munglour, and between the latter place and Liberheri, there was not more than from 0 to $3 \frac{1}{2}$ feet of excavation, which would have left the full water-surface level of the canal $6 \frac{1}{3}$ to 10 feet above the surrounding country. The error above adverted to occurred in a manner not easily accounted for. The levels of the country along the proposed line had been repeatedly and most accurately taken, they had been connected with Major Cautley's bench-marks, and the general agreement was highly satisfactory. The error, in fact, was not in taking the surface levels of the country, but in the calculation of the distance.

The unexcavated space between the end of the Munglour and the beginning of the Muhmoodpoor digging was miscalculated in excess by 5,650 feet, and the fall or bottom slope assigned to that length was proportionately excessive. The canal bottom, from the commencement of the Muhmoodpoor digging onwards, was therefore $20 \frac{1}{2}$ inches too low. It is obvious that such a mistake ought not to have occurred; but, considering the scrupulous and laborious accuracy of Lieut. Turnbull in taking the levels and laying down the directions of the straight and curved lines of the canal, this one oversight may well be excused: nor, as director of the works, do I wish to evade my share of the blame, in failing to check the distances as well as the levels.
43. The correction of the bottom level has been effected by giving a fall of 3 feet at the Asufnuggur Bridge, and reducing that at Muhmoodpoor from 8 to $6 \cdot 31$. The results of this error have been in some respects convenient, as we have combined with its correction a desirable modification of the original section, and have obtained earth to complete the embankments at a cost considerably below what must otherwise have been incurred, as a line of rails must have been laid down for that purpose.
44. The following is the present state of the earthwork in the Munglour Division. From the head of the division to the commencement of the Liburheri curve ($1 \frac{1}{2}$ miles), the work is completed; from thence to Mulmoodpoor ($4 \frac{1}{4}$ miles) the contractors are now employed, and the work is well advanced. From Muhmoodpoor to the sand-hills near Toghulpoor (7 miles), the excavation is taken out to the full depth. The deep digging through the sand-hills is not yet commenced-the unexcavated space is about 1 mile. After which commences the Toghulpoor digging, which is $3 \frac{1}{2}$ miles long, and extends to the end of the Nugla curve, up to which point it is complete and all in excellent repair.
45. From the Nirgaujni to the end of the Jowli curve, the canal is lined out, the dagbels marked, and small brick pillars built at short intervals.
46. I have merely further to remark, with reference to the excavation of this division, that the soil at the level of the canal bottom from Munglour to Nugla is very sandy, and appears to me liable to future erosion by the strong current of the canal-a process which must be met by permanent bars across the channel. The addition of masonry floors and curtain walls to the bridges would partially serve this purpose, but if the disturbance of bed be considerable, intermediate bars of masonry (in other works, "pucca" sections of the canal) may be found requisite where the soil is bad.
47. The Military Board have supposed that the usefulness of the Ganges Canal, as an irrigating machine, will be impaired by the adoption of the Medical Committee's recommendation-that the water should be kept within soil. Had it been intended to irrigate directly from the canal itself, the water must certainly have been kept generally above the surface level of the country, but such was not the case. Major Cautley always intended that the water of the Ganges Canal should be distributed by means of rajbuhas or main watercourses, which would be of considerable length, and, having a less fall than that of the country, would soon bring water up to the level of the cultivated land. With further reference to this arrangement, the canal will be taken along the highest ridge of the country. The adoption of the Committee's recommendation will not involve any material departure from Major Cantley's design. A glance at his calculations for excavation (pages 10 to 21 of the Estimates in the printed report) will show that the average estimated depth is in most cases sufficient to fulfil the prescribed conditions.
48. The masonry works of the Munglour Division already completed, or nearly so, are the Munglour workshops, the first-class chokies of Muhmoodpoor and Bailra, and the second-class chokies of Munglour, Dimat, Toghnlpoor, Nirgaujni, Bhopah, and Jowli. The workshops are on a smaller scale than those of Roorkee, but will, I.believe, be found sufficient for the wants of the division.
49. The first and second-class chokies are built in accordance with the designs, but with deeper foundations. With exception to the Muhmoodpoor choki, they are built on the embankments, as more convenient for the required purpose, though involving the necessity of carrying the foundations through the made soil to the natural surface of the ground. The walls of the second-class chokies are, with the sanction of the Military Board, raised 3^{\prime} higher than was at first proposed, to admit of the use of a punkha.
50. Of the Munglour and Toghulpoor bridges, the foundations are complete; and of the former, the piers and abutments are built to spring of arch. The original design for this part of the work has been considerably modified. In both instances, the soil, to the greatest depth to which I have examined itviz., 25 feet below the level of the bottom of the canal-consists of sand, with a slight mixture of clay, and having more or less solidity. I have, therefore, deemed it expedient to increase the depth of foundations from 10 feet to 12 and 15 feet, according to soil; and to prevent the erosion of the canal bottom, I have added front and rear curtain walls and a masonry floor. I have increased the surface supporting the structure, by adding a broad footing to all the foundations, aud I have reinforced the abutments by the addition of strong counterforts. As a set-off to these additions, the thickness of the piers and of the abutmeuts between the counterforts has been slightly reduced.
51. The excavation for founding several of the falls and bridges of the Munglour Division is in progress. In both cases, the channel at site of the work requires modification. The width of the bridges between the abutments is 179^{\prime}; that of the canal bottom being 140^{\prime}, it is arranged as in fig. a.

The width of the falls between abutments is $172 \frac{1}{2}$ feet, which, above bridge, is similarly accommodated to the width of the canal. Below bridge, I have deemed it better to adopt at once the form of channel (vide fig. b) which the action of the water would inevitably cut out for itself. I would further strongly recommend the addition of the curved revetments, a, a.
52. I may here remark, that previous to the preparation of working plans for any bridge, the executive officer examines the soil to a depth of 25 feet below the canal bottom, by means of three vertical shafts or kutcha wells, and sends to the director's office a report of the results, and specimens of the soil taken at every $2 \frac{1}{2}$ feet. These samples are kept in the model-room, and a sheet of sections is also prepared, showing the depth of foundation of each work, and the nature and succession of strata at its site.
53. The greatest difficulty in this division has been expe-
 rienced in burning bricks, the koora required for fuel being lighly prized by the cultivators, and most unwillingly parted with by them. The requisite numbers for the several bridges have now, however, been nearly completed, and either wholly or in part carted to and stacked at the sites of the works. The larger numbers required for the falls are not yet complete; nor, at the present rate of progress, could they be got ready in many years. Arrangements will therefore be made to burn them with wood wherever that description of fuel is obtainable at a reasonable cost.
54. The bricks, as they are unloaded from the kilns, are taken to the sites of the works, and it is my wish that, when sufficient for that purpose are collected, the foundations should be got in at once, as the most convenient way of disposing of the bricks and releasing the ground covered by the stacks.
55. In the third, or Bolundshuhur Division, under Mr. Volk; in the fourth, or Futtigurh Division, under Lieut. Hodgson; and in the sixth, or Cawnpoor Division, under Lieut. C. W. Hutchinson, the preliminary esamination of the country is in active progress, and printed instructions have been issued for the guidance of the executive engineers. No executive officer has yet been appointed to the Etawa Division, but Mr. Dodsworth is engaged in taking a series of levels in that direction.
56. In conclusion, it is but justice to the executive officers and assistants on the Ganges Canal, and more especially to Lieuts. Strachey, Turnbull, and Yule, to state to the Military Board my high estimation of the zeal, ability, and good feeling, which has animated their exertions in forwarding this great work.

The executive officers have had to struggle with many difficulties, the conquest of which, though it has smoothed the path of their successors, has doubtless enhanced the cost of their own work, and it is important to bear this in mind, and to be cautious in drawing unfavourable comparisons between the cost of the past and future work, and in attributing to the superior care and management of future executives an improvement in economy, which may be chiefly due to the results of their predecessor's labours. The power requisite to maintain the regular and equable motion of a vast machine, is no measure of the force required to set it going.
(Signed) W. E. Baker, Major, Director Ganges Canal.

APPENDIX F.

Data on which the Projects for the Ganges Canal, submitted by Captain Cautley with his Report of 1845, were founded.

The following points being conceded as axioms, the data for the discharge, and the capacity for the canal channel, have been framed upon them.

1st. That a discharge of 1 cubic foot per second, constant, is equal to the irrigation of 350 beegahs of 55 yards square each.
2nd. That from the results of the Delhi and Doab Canals, 800 cubic feet per second, constant, is a fair supply for irrigation for 100 miles in length of a canal.
3rd. That taking village estates with reference to their general character, a proportion of surface equal to one-third of the whole is a fair proportion requiring irrigation.
2. On each 100 miles in length, therefore, the canal would, on the second axiom, irrigate 280,000 beegahs, or $273 \cdot 4$ square miles, and, on the third axiom, this would be sufficient for an area of country equal to three times that amount, or to 820.2 square miles.
3. I assume, therefore, that a strip of country on each side of the canal from four to five miles, say five miles, in width, would be irrigated. The beneficial effects of irrigation being open to distant lands, when those in the immediate neighbourhood of the canal were not suited to irrigation.
4. Now the Ganges Canal on project No. 1 is proposed to run in an uninterrupted and direct line from Hurdwar to Allahabad, the total distance being 453 miles; from this main line branches will be taken off towards Futtigurh, Tuppul in the Bolundshuhur district, Etawa, and Cawnpoor.
5. The first part of the line, viz. that from Hurdwar to the village of Nusseerpoor ($27 \frac{1}{2}$ miles in length), may be considered as removed from the influence of irrigation, from its passing through Khadir land in the carly part of its course, and deep digging immediately above Nusseerpoor; there remains, therefore, $42 . \frac{1}{2}$ miles, requiring, as above, 3,404 cubic feet of water for irrigation on the main line only.
6. The lengths of the branches are as follow :-

Futtigurh	160	miles
Bolundshuhur	\ldots	70	
Etawa	\ldots	\ldots	\ldots	172	"
Cawnpoor ...	\ldots	...	\cdots	...	\cdots		$43 \frac{1}{2}$	"

For the first five miles of these branches, the country may be considered under the influence of the main line, as far as irrigation is concerned. The total length of canal, therefore, including both the main line and the branches, for which irrigation must be provided, is as follows :-

Main line	\ldots	\ldots	...	453	- 27	$=425$	mile
Futtigurh branch	\ldots	\ldots	...		- 5	$=155$	
Bolundshuhur branch		- 5	$=65$	
Etawa branch	...	\ldots	...	172	- 5	$=167$	"
Cawnpoor branch	\ldots	\ldots	...		-5	= 38 ${ }_{2}$	"
Total	\ldots		851	"

By referring to the sheet of sections of the main line, it will be observed that throughout the whole of the Futtipoor and Allahabad districts, or on the last 100 miles approaching the terminus, the excavation
of the canal channel is so deep, that, although cuts may be taken off at right angles for the purposes of irrigating distant lands, the fields in the immediate vicinity of the canal will with difficulty be supplied with water, and that only by machinery. I have, therefore, reduced the supply of water for irrigation on this lower tract from 8 to 4.92 cubic feet per second for each mile-turning the difference to a more useful account in the Cawnpoor district.
7. The distribution of the whole body of the canal supply, therefore, which is calculated at 6,750 cubic feet per second, and which is supposed by the Committee to reach the high land of the Doab at Roorkee, will be thus:-

8. The detail of discharges at the heads of branches, with that for the computation of the capacity of the main channel and transverse sectional area of excavation, will be thus:-

1st.	Distance from the head at Hurdwar to the departure of the Futtigurh branch						50 miles.	
	Futtigurl branch to Bohundshuhur branch		...				60	
3 rd .	Bohundshuhur branch to Etawa branch	\ldots					70	"
	Etawa branch to Cawnpoor branch		100	"
5th.	Cawnpoor branch to terminus at Allahabad		173	,
	Total length				453	

As noted in the 5th paragraph of this Appendix, 272 miles must be deducted from the first item, leaving $22 \frac{1}{2}$ out of the 50 miles to be supplied with water for irrigation. From this results the following table:-

Expenditure on the main Canal to below						Water demanded for Irrigation.			Discharge below Branch on the Main Line.
						Main Line.		Branch.	
Futtigurh head Bolundshuhur head Etawa head ... Cawnpoor head To Allahabad	\ldots	\ldots	\cdots	\ldots	\ldots	6,750 -	$180+$	+1,240)	$=5,330$
	...	\ldots	5,330 -	$480+$	+ 520)	= 4,330
					...		$560+$	+1,336)	$=2,434$
	2,434 -	$800+$	+ 308)	$=1,326$
	...	\ldots	1,326 -	1,076 +	- 0)	$=250$

Leaving for the purposes of navigation 250 cubic feet per second.
9. The dimensions of the main channel are represented in the following sections:-

No. 1.-From the head of the Main Canal to the Futtigurh branch head, distance 50 miles.

No. 2.-From the Futtigurh branch head the section will be reduced to,

No. 3.-From the Bolundshuhur branch head, the section will be reduced to,

No. 4.-From the Etawa branch head, the section will be reduced to,

No. 5.-From the conmencement of the 250 th mile, the section will be reduced to,

No. 6.-From the commencement of the 281 st mile, or from the Cawnpoor branch, the section will be reduced to,

No. 7.-At the Terminus the section will be reduced to,

The capacities of these sections are as follow; the values of R and $\frac{1}{b}$ being calculated on no fractional parts beyond 5 in the former, and in round numbers in hundreds in the latter :-

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Section.} \& \multirow{2}{*}{Value of R .} \& \multirow{2}{*}{Value of $\frac{1}{b}$.} \& \multirow[t]{2}{*}{Sectional Area Square Feet.} \& \multirow{2}{*}{V in Feet.} \& \multicolumn{2}{|c|}{Discharge.}

\hline \& \& \& \& \& Theoretical. \& Required.

\hline Number \& $106 \cdot 96$ \& \& 1,500.00 \& $4 \cdot 469$ \& 6,703•5 \& 6,750

\hline 2 \& 106.57 \& 3520
31
3520 \& 1,251.00 \& $4 \cdot 245$ \& 5,310.0 \& 5,330

\hline 3 \& 94.67 \& 3520

7520 \& 1,053 $\cdot 00$ \& $4 \cdot 202$ \& 4,425.0 \& 4,330

\hline 4 \& $78 \cdot 90$ \& $\frac{1}{4294}$ \& $731 \cdot 25$ \& $3 \cdot 461$ \& 2,530.9 \& 2,434

\hline 5 \& 73-23 \& $\frac{1}{4525}$ \& $609 \cdot 00$ \& 3•206 \& 1,952.4 \& 1,874

\hline 6 \& $63 \cdot 39$ \& \& $486 \cdot 00$ \& 2.733 \& 1,328.2 \& 1,326

\hline 7 \& $38 \cdot 33$ \& $\frac{1}{3280}$ \& 116.00 \& $2 \cdot 117$ \& $245 \cdot 6$ \& 250

\hline
\end{tabular}

The formala is thus (Dubaat's): -
$\mathrm{V}=\frac{306.55(\sqrt{\mathrm{R}}-0 \cdot 10325)}{\sqrt{b-\text { Hyp. Log. } \sqrt{ } b+\overline{1 \cdot 6}}-0.31(\sqrt{\mathrm{R}}-0.10325)}$
When $\mathrm{V}=$ mean velocity per eecond,
$R=$ mean radius, i.e. the area of the section in square inches, divided by its wall, or that part of the perimeter in contact with the fluid, in linear inches.
$\frac{\mathbf{1}}{b}=$ the denominator of the fraction expressing the slope of the bed, or surface of the water; the numerator being unity, so that a slope of one inch in one thousand is equal to тöd $^{2}=\frac{1}{b}$ and $b=1000$.

The ratio between the velocities at the surface and those at the bottom is exhibited in the following table, where 0 denotes the former, and U the latter. The surface velocities have been
deduced from Dubuat's formula; and the values of V and U of both Dubuat and Prony have been calculated.

Section.	Values in Feet of					Slope of Canal Bed per Mile, in Inches.
	v.	V.		U.		
		Dubuat.	Prony.	Dubuat.	Prony.	
Number. 1	5•13	$4 \cdot 46$	$4 \cdot 15$	3•79	3•18	18
2	$4 \cdot 88$	$4 \cdot 24$	$3 \cdot 95$	$3 \cdot 60$	3.02	18
3	$4 \cdot 83$	$4 \cdot 20$	$3 \cdot 91$	$3 \cdot 57$	2.99	18
4	$4 \cdot 04$	$3 \cdot 47$	$3 \cdot 27$	2.90	$2 \cdot 50$	15
5	$3 \cdot 77$	$3 \cdot 21$	$3 \cdot 05$	$2 \cdot 65$	$2 \cdot 33$	14
6	$3 \cdot 27$	$2 \cdot 76$	$2 \cdot 64$	$2 \cdot 25$	$2 \cdot 02$	12
7	2.55	$2 \cdot 10$	$2 \cdot 06$	1.65	1.58	12
	$3 \cdot 08$	$2 \cdot 58$	$2 \cdot 49$	$2 \cdot 08$	1.90	12
	$3 \cdot 20$	$2 \cdot 69$	$2 \cdot 59$	$2 \cdot 18$	1.98	12
	3-30	$2 \cdot 78$	$2 \cdot 67$	$2 \cdot 26$	$2 \cdot 04$	12
Dubuat.				Prony.		
$v=(\sqrt{\text { V }-\cdot \overline{3}}+\cdot 55)^{2}$				$v=\frac{V}{.81}$		
$\mathrm{V}=(\sqrt{v-} 55)^{2}+3$				$\mathrm{V}=\cdot 81 v$		
$\mathrm{U}=2 \mathrm{~V}-v$				$\mathrm{U}=\cdot 62 v\left\{\begin{array}{c} \text { Preserving the rule } \\ \text { quoted in the note. } \end{array}\right.$		

With regard to the effect that the maximum velocity at the bottom, agreeably to the above table, may have upon the soil at the bed of the canal, I am only able to draw inferences from what has occurred on the Doab Canal, where the disarrangement of the bed, depending not only on excess of slope, but on the irregularity with which that slope existed, was great; the points in the bed which suffered severely were those where the declivity per mile varied from 4 to $5 \frac{1}{2}$ feet, or where, agreeably to the above formula, the velocity of the current at the bottom was equal to $4 \cdot 1$ and 6.6 feet per second of Dubuat, and $3 \cdot 39$ and $5 \cdot 25$ feet per second of Prony. From 2 to 4 feet declivity per mile, the action on the bed varied agreeably to the nature of the soil over which the current passed; but this action was not clangerous, though it must have been greatly influenced by the constant change of situation in the deposits of silt which took place at this period. In remodelling the slopes, a maximum declivity of 2 feet per mile was determined on, which, with the supply that the canal might be expected to hold, would, on the above formula, give a velocity at the bottom equal to 3.5 or 3 feet per second. Up to the present period, we have not had the means of testing the action on the remodelled slopes (from circumstances unconnected with these inquiries, the proposed slope of 24 inches was reduced to 23 inches per mile) with a mean radius of section greater than $40^{\circ} 7$; this gives a velocity at the bottom equal to $2 \cdot 7$ and 2.3 feet per second, which might certainly be considerably exceeded, as far as I am able to judge from the stable state of the canal bed; the soil is good.

It will be observed that, in the project for the Ganges Canal, the declivity of bed is less than that above alluded to, but the magnitude of the mean radius of the section gives a velocity to the current due to the greater slopes of the Doab Canal. I have no reason for anticipating any dangerous effects from this velocity, but, at the same time, I would recommend that the branches should not be commenced upon until the main line is completed, and the action of the water necessary for that line carefully observed. A decrease int depth of water to the first section equal to $3 \frac{1}{2}$ feet would reduce the current at the bottom of the canal to 3.07 and 2.64 feet per second of Dubuat and Prony respectively, and would give a supply equal to

[^7] FOL. III.

3,494 cubic feet per second, which is somewhat more than is required for the purposes of both irrigation and navigation.

The following table is explanatory of the capabilities of the Solani Aqueduct, the depth of water being retained as in section $1:-$

	Area of Section in Feet.	R.	$\frac{1}{b}$.	Value in Feet of					Discharge per Second.
				v.	V.		U.		
					Dubuat.	Prony.	Dubuat.	Prony.	
Earthen aqueduct revetments	\} 1,590	101*0	उ5 ${ }^{1}$	5•00	4.35	4•05	3•70	3•10	6,906
Masonry aqueduct ...	1,700	97•1	उड ${ }^{\frac{1}{50}}$	$4 \cdot 87$	$4 \cdot 23$	$3 \cdot 94$	$3 \cdot 59$	$3 \cdot 01$	7,237

Were each of the masonry channels reduced to a breadth of $82 \frac{1}{2}$ feet, the equilibrium between their total value and that of the earthen aqueduct would be more perfectly established, but the stone piers, which are fixed in the bed of the channels at both extremities, may probably have some effect in interfering with the current, an evil which will be qualified by this additional width.

The formula for afflux (or rise to the water's surface level on the superior side, arising from the construction of a bridge over the course of a river) which has been used is this:-
$\left(\frac{\mathrm{V}^{2}}{2 \mathrm{G}}+p\right) \times\left(\mathrm{K}^{2}-1\right)$
$\mathrm{V}=$ mean velocity of current before the erection of the bridge.
$\mathrm{K}=$ rates between sectional area of the river and the aggregate waterway of the bridge.
$p=$ difference of level on contracted or narrowed part of the river.
$\mathrm{G}=$ the acquired velocity at the end of one second by a ponderous body falling freely: this is always an uncertain part of these equations, the reasons for which are explained by Dubuat; it has been used throughout my calculations as 330 .
10. The berms of the canal, or the space between the interior slopes of the embankment and the channel, are proposed to be raised 12 inches above the high-water mark, and the top of the embankments are not to be less than 3 feet above the same level. The terreplein, or top of banks, to be not less than 20 feet wide, excepting on the last 100 miles of the canal, where this minimum width may be reduced to 16 feet; where earth is in excess, the extra soil will be used in extending the width to the rear; where there is a deficiency, the earth required for the completion of the banks to their full height and width will be obtained by digging superficial trenches, not deeper than 12 inches, either within or without the canal boundary; if without, the sides ought to be sloped off so as to admit of a plough passing over them. The limits to the canal ground ought to be marked off by a ditch 3 feet wide and as much deep.

Catnapoor Brancr.

11. Forty-three and a half miles long, with a slope of 12 inches per mile: the supply for this branch is 308 feet per second. The masonry head at Rousa, from which it receives its supply, consists of two openings of 20 feet each. The capacity of channel at the point of departure is-

Section.		Value of IR.	Value of $\frac{1}{6}$.	Sectional Area Square Fect.	V in Feel.	Discharge.	
						Theoretical.	Required.
At the point of departure	...	51981	$5 \frac{1}{2} 85$	246	2.085	$635 \cdot 9$	$308 \cdot 0$

These dimensions decrease to a width of 21 feet until the branch terminates at the escape into the Pandoo at Gowri. The capacity of this channel is sufficient for twice the quantity that the supply for irrigation demands, to admit of surplus water being thrown down it.

Grodnd occopied dy the Canal.

12. It is proposed that plantations of forest trees should be established on each side of the canal-the berms, slopes, and embankments, being kept entirely free from either trees or vegetation. Where, however, the terreplein, or top of bank, exceeds the proposed width of 20 feet, it will be desirable to keep a space not exceeding 30 feet in width clear for the purposes of a roadway. It will be evident, on a reference to the table of excavation, that beyond that required merely for the formation of embankments, much superfluous earth will remain; this would be spread out up to the boundary ditch. On the early portion of the canal the excavation is so extensive, that the whole of the land within the boundaries will be raised to the height of the terreplein; with the exception, however, of the berm, slopes, and the roadways, the whole will be planted: the superficial area of land which the canal will occupy on No. 1 project may be estimated as follows:-

Main Line.

13. In addition to the above, it is proposed to establish orchards of grafted mango-trees at every firstclass choki, or at every 15 miles or thereabouts; each orchard to consist of 5 acres. These may hereafter be extended throughout the branch lines, but the main line only is now taken into consideration. It will also be necessary to take in a portion of ground at Roorkee for the workshops, timber-yard, brick-ground, and for general purposes. The additional space required under these heads may be estimated at 250 acres, viz. : -

34 orchards $\times 5=$	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	170
Roorkee ground	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	80
		\ldots	\ldots	\ldots	\ldots	\ldots	250
	acres.						

The object in combining with the plan for plantations of forcst trees, one for the grafted mango, is to take advantage of the means of protection and care offered by the canal establishment in introducing generally on the whole line of the Doab a fruit which in its natural state is highly prized by the native
community, and which, when cultivated, will be still more acceptable. The orchards will be annually farmed out, and the proceeds set off against the expenses of original outlay and maintenance; each orchard will be the nucleus of distribution for grafts when the parent trees have arrived at maturity, and it may be inferred that, by the means proposed, a very superior fruit will be generally disseminated.
14. In the above calculations, the total area of land required for the purposes of the Ganges Canal and its branches will be equal to $25,196 \cdot 48$ acres, say 25,200 acres, which, at an average of $2 r s .8 a$. per acre, leads to an annual remission of $63,000 \mathrm{rs}$. It may appear at first sight that this sum, which is annually disbursed from the treasury as long as the present assessments last, and the equivalent of which in the land itself is struck out of the Jumma when the next settlements take place, is not only an annual and permanent loss to the Government, but a dead weight upon the canal returns. It must be recollected, however, that the consequence of introducing facilities for irrigation are, increased value of property, and a security to the realization of the Government revenue. I merely advert to the direct benefits to the State as exhibited in the treasury receipts, and that these benefits will far counterbalance the remission for land taken up originally for the canal purposes, appears to me to be evident.
15. Independently, however, of remission for land occupied by the canal, the items of remuneration for standing crops, trees, buildings, wells, \&c., present themselves; it is hardly possible to determine the exact amount which may be carried to this account. It would be a necessary part of the superintendent's duty, however, to make such arrangements as might prevent, as much as possible, the removal of standing corn, sugar-cane, cotton, \&c., by postponing the excavation of the canal at points where they existed, and giving warning to the cultivators not to sow within the limits of the canal boundaries, when such boundaries had been distinctly laid down. I am not, therefore, disposed to estimate the remuneration on this item at a high amount. Trees and masonry wells would have to be paid for when actually removed, but I would restrict this removal to that portion of the canal limits occupied by the banks, berms, and channel. On that portion within the boundary devoted to plantations, the trees standing might be allowed to remain, as the property of the owner, until he wished to remove them, and the wells might continue in use for irrigation, without in any way interfering with the interests of the canal. This might be laid down as a general rule, the exception being where removal was necessary, in which case remuneration would be given.
16. The remark, however, appended to paragraph 14 is equally applicable here: the original outlay on remission and remuneration, whether for land, crops, trees, or buildings, would meet with an ample return in the increased value of estates and property.

Ganaes Canal Project No. 2.

17. Up to the 280th mile, or to the departure of the Cawnpoor branch, there is no difference between this and the first project, and Nos. 1 to 5 of the Sections, with their calculated capacity for discharge, remain as before. In this project, however, the increased length of the Cawn removal of water from the main channel of 172 cubic feet per second, which (although, for reasons before explained, no additional waterway is required at the head of the branch) renders a reduction to the section of the raain line after the departure of that branch convenient.
18. In continuation, therefore, from No. 5 section of Project No. 1, we have-

No. G.-From the commencement of the 281 st mile, or below the departure of the Cawnoor branch, the sertion will be reduced to-

No. 7.-From the conmencement of the 361 st mile the section will be relluced t1, and continue to, the terminus.

1,194 cubic feet per second passes the 280th mile for the purposes of irrigation and navigation, the length of canal being 173 miles; for the first 80 of which an allowance is made for irrigation, agreeably to the second axiom of 8 cubic feet per mile, and to the latter from the reservoirs for lockage 3.26 cubic feet per mile-the disposal of the whole body being thus:-

Stop bridges will be placed on the canal, south of the Cawnpoor Head and south of the Deosur Escape, to regulate this supply, and protect the canal on its reduced section (commencing at the 360th mile) from being overloaded.
19. It will be observed that, on the above calculation, the quantity of water in the canal, on its reaching the diminished section, figure No. 7, is equal to 614 cubic feet, whereas the capacity of channel upon which the above section has been framed is only equal to carry 244.64 cubic feet per second. By referring, however, to the depths of excavation from the 360th mile downwards, vide Estimate, it will be seen that they far exceed 4 feet, which as the minimum depth was that to be admitted into the calculations; the capacity of this channel, therefore, is fully equal to the quantity of water it will receive. I have been more willing to give an excess of water on this line, from the circumstance of the immediate neighbourhood of the Glatumpoor Purgunna, in tlre Cawnpoor District, a tract of land lying to the south-west of the town of Sarh and the Fort of Deosur, and greatly in want of irrigation. The purgunna in question lies on the right or opposite bank of the Rinde River, but a cut taken from the canal at some point between Suchindee and Etarra, vide Sheet of Protracted Levels, No. 9, would, by the interposition of an aqueduct built over the Rinde, provide this tract of land with ample means for irrigation.
20. This project will add in a small degree to the amount required for remuneration on land, viz., that for an additional length of $16 \frac{1}{3}$ miles to the Cawnpoor branch, thus-

No. 3 Project.

21. Up to the departure of the Cawnpoor branch, at the 280th mile, the calculations remain the same as in the former projects; from the point of separation each branch, viz., that one towards Allahabad, and that to Cawnpoor, are projected as lines of navigation, the former being locked into the Jumna south of the Rinde River, and the latter into the Ganges at Cawnoor. The sections are as follow :-

No. 6.-Allahabad Branch below regulator at the point of separation.

No. 7.-Allahabad Branch Terminus.

No. 6.-Cawnpoor Branch below regulator at the point of separation.

No. 7.-C'aunpoor Branch at Terminus.

Section.					Value of R.	Value of $\frac{1}{b}$.	Sectional Area Square Fcet.	V in Feet.	Discharge.		
					Theoretical.				Required,		
Number 6	\cdots	\cdots	...	\cdots		$56 \cdot 81$	डोगठ	246	$2 \cdot 585$	$635 \cdot 9$	666.28
, 7	\cdots	\cdots	38-33	कुग	116	$2 \cdot 117$	$245 \cdot 6$	250.00	

On the Allahabad branch, a reluction in width of one foot takes place on each 5 miles. On the Cawnpoor one, a similar reduction is made on every 6.
22. In this project, 1,634 cubic feet per second reaches the point where the Allababad and Cawnpoor lranches separate; out of which is reserved, for the purposes of navigation, 500 cubic feet per second, that
is, 250 for the terminus of each. The remainder, which is applicable to irrigation, is divided off as follows:-

					Ft. per	Second.	Ter Mile.
Allahabad branch,	100 miles, has	..	\ldots	...	$717 \cdot 72$	or	$7 \cdot 0871$
Cawnpore "	$63-5=58$.	416.28	or	7-8750

This proportion of water per seobnd for the supply of each running mile is somewhat less than laid down in the second axiom of this Appendix.
23. The quantity of land occupied on this project will be as before, deducting $93-20$ miles, or the difference between the length of canal from the 360th mile to Allahabad, and that from the 360 th mile to the Jumna near the mouth of the Rinde River.

$$
\begin{aligned}
& \begin{array}{l}
\text { Therefore, as before } \ldots \quad \ldots \quad \ldots \quad \ldots \\
\text { Deduct } 385,440 \times 150=\frac{57,816,000}{43,560}=\ldots \\
\\
\text { Total quantity of land required for No. } 3 \text { project } \\
\end{array} \\
& \text { (Signed) P. T. Cattiex, Captain, } \\
& \text { Director Ganges Canal Works. }
\end{aligned}
$$

APPENDIX G.

Report on the Water in the Hindun River, from the Point where the Bridge is building at Ghazioodeennugger to its Junction with the Jumna, near the Village of Mozabad, as taken on the 4 th, 5 th, 6 th, and 7th of April, 1840.

	Distance.	Width.	Central Depth.	Remarks.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Station. } \end{gathered}$	Distance.	Width.	Central Depth.	Remarks.
	Feet.	Feet.	Ft. Ins.			Feet.	Feet.	Ft. Ins	
1	1,000	1083 ${ }^{\frac{1}{2}}$	$\begin{array}{ll}3 & 2\end{array}$	From No. 1 to 36, taken	39	1,000	92	24	
2	1,000	180	310	on the 4th April, 1840.	40	1,000	89	32	
3	1,000	145	24		41	1,000	85	30	
4	1,000	112	22		42	1,000	93	310	
5	1,000	65	43		43	1,000	131	22	
6	1,000	148	24		44	1,000	111	34	
7	1,000	86	56		45	1,000	108	36	
8	1,000	123	30		46	1,000	75	82	
9	1,000	132	33		47	1,000	137	23	
10	1,000	140	24		48	1,000	101	24	
11	1,000	174	40		49	1,000	63	37	
12	1,000	76	$4 \quad 4$		50	1,000	55	$5 \quad 2$	
13	1,000	113	21		51	1,000	98	41	
14	1,000	111	2111		52	1,000	99	$\begin{array}{ll}3 & 2 \\ 3 & \\ \end{array}$	
15	1,000	61	72		53	1,000	11.5	30	
16	1,000	100	35		54	1,000	94	56	
17	1,000	106	$10 \quad 2$		55	1,000	10.5	24	
18	1,000	97	3		56	1,000	63	35	
19	1,000	105	9		57	1,000	76	42	
20	1,000	92	42		58	1,000	71	41	
21	1,000	88	61		59	1,000	01	51	
22	1,000	110	39		60	1,000	89	26	
23	1,000	122	24		61	1,000	132	21	
21	1,000	110	21		62	1,000	75	$\begin{array}{ll}3 & 1 \\ 2 & 0\end{array}$	
25	1,000	87	311		63	1,000	85	20	
26	1,000	102	210		64	1,000	78	23	
27	1,000	150	20		65	1,000	50	114	
28	1,000	84	34		66	1,000	191	38	
29	1,000	101	54		67	1,000	57	34	
30	1,000	86	62		68	1,000	60	410	
31	1,000	110	30		69	1,000	66	6.2	
32	1,000	88	31		70	1,000	79	211	
33	1,000	180	21		71	1,000	117	111	
34	1,000	110	$\begin{array}{lr}2 & 9\end{array}$		72	1,000	57	$\begin{array}{ll}5 & 8 \\ 6\end{array}$	
35	1,000 1,000	71	$\begin{array}{ll}2 & 10 \\ 4 & 6\end{array}$		73	1,000	60	$\begin{array}{ll}6 & 0 \\ 6 & 9\end{array}$	
36 37	1,000 1,000	62			74	1,000 1,000	71	$\begin{array}{ll}6 & 9 \\ 4 & 9\end{array}$	
37 38	1,000 1,000	59 65	$\begin{array}{ll}2 & 9 \\ 2 & 2\end{array}$	From No. 37 to 79, taken on the 5 th April.	75 76	1,000 1,000	73 62	4 4 4	

	Distance.	Width.	Central Depth.	Remarks.		Distance.	Width.	Central Depth.	Remarks.
	Feet.	Feet,	Ft. Ins.			Fect.	Feet.	Ft. Ins.	
77	1,000	84	[38.		119	1,000	108	20	
78	1,000	65	91		120	1,000	68	88	
79	1,000	85	210		121	1,000	138	26	
80	1,000	113	28	From No. 80 to 124,	122	1,000	106	211	
81	1,000	73	31	taken on 6th April.	123	1,000	58	511	
82	1,000	87	24		124	1,000	74	42	From No. 124 to 159,
83	1,000	69	211		125	1,000	130	110	taken 7th April, 1840.
84	1,000	78	28		126	1,000	103	210	
85	1,000	107	20		127	1,000	95	410	
86	1,000	80	$4 \quad 2$		128	1,000	128	111	
87	1,000	62	41		129	1,000	112	16	
88	1,000	100	21		130	1,000	69	82	
89	1,000	67	32		131	1,000	74	61	
90	1,000	106	22		132	1,000	112	32	
91	1,000	102	46		133	1,000	127	211	
92	1,000	79	410		134	1,000	91	30	
93	1,000	120	110		135	1,000	120	27	
94	1,000	80	41		136	1,000	96	28	
95	1,000	81	31		137	1,000	89	211	
96	1,000	89	28		138	1,000	54	71	
97	1,000	84	210		139	1,000	101	510	
98	1,000	86	48		140	1,000	120	22	
99	1,000	106	22		141	1,000	139	20	
100	1,000	85	31		142	1,000	97	21	
101	1,000	97	34		143	1,000	141	111	
102	1,000	96	23		144	1,000	67	36	
103	1,000	90	21		145	1,000	80	26	
104	1,000	74	$6 \quad 9$		146	1,000	80	27	
105	1,000	109	50		147	1,000	100	110	
106	1,000	76	41		148	1,000	64	24	
107	1,000	168	15	At points Nos. 107 and	149	1,000	82	30	
108	1,000	151	14	108, where there is	150	1,000	104	$2{ }^{2} 1$	
109	1,000	89	22	least water, is close to	151	1,000	137	21	
110	1,000	68	28	the village of Gojur.	152	1,000	90	$110 \mid$	
111	1,000	114	211		153	1,000	68	210	
112	1,000	94	23		154	1,000	85	110	
113	1,000	95	61		155	1,000	89	111	
114	1,000	105	$\begin{array}{ll}2 & 3 \\ 10 & 7\end{array}$		156	1,000	77	31	
115	1,000	82	107		157	1,000	73	20	
116	1,000	111	211		158	1,000	83	19	
117	1,000	83	24		159	1,000	94	28	
118	1,000	130	20						

9th April, 1840.
(Siyned)
H. B. Bhew, Overseer,

Eastern Jumna Canal.

APPENDIX H.

Circular Memorandum to all Executives on the Ganges Canal.
No. 82.
Dated 1st Junuary, 1852.
l'LaN and section of canal, with reference to roadway, plantations, and ultimate annual clearance.

Fig. 3.

Fig. 1 shows a section of the canal, as it is supposed to be, when the plantations are established. These plantations will, on the right bank of the canal, be established from the boundary ditch to A , or to the crest of the interior slope of the embankment. On the left bank of the canal, the plantations will be confined to the ground situated between the letter в and the canal boundary on that side.

The intermediate space between Δ and b , including the interior slopes, berms, roadway, \&c., and canal chamel, will be kept perfectly free from plantation, as well as from jungle.

Fig. 2 shows a plan with a representation of the lining out of plantation and roadway at every mile-stone; the diagram speaks for itself; the esplanade for the mile-stone will have a chord of 150 feet and a versed line depending on the width of artificial esplanade existing. The mile-stones ought to be centrically situated.

Fig. 3 shows the section of the road on a larger scale, with dimensions of edging; it shows also the slope to be given to the 30 feet esplanade which I propose to leave for the roadway, and the cleared space parallel to it; this slope is directed upon the outside, so that the canal channel may not be interfered with (my only object in giving the slope is, that the drainage may pass off to the outer boundary; any slope, sufficient for this purpose, will answer, whether it is $3^{\prime \prime}$ or $\frac{1}{2}$ an inch). The roadway itself will be maintained clear from jungle or impediment of any sort; it will be kept well rolled on a breadth of 20 feet, as shown in the diagram; the 10 feet in the rear, which is intended to receive the dropping from the trees, and will relicve the roadway from the projecting branches, will be kept clear from jungle, and it will act, in case of necessity, for carts and hackeries.

It is an object to keep the 20 feet of road free from Kunkur metalling; but in very sandy tracts, like those in the upper parts of the first and second divisions, either kunkur or clay must be laid down ; I prefer the latter as more suitable for horses' feet, and more agreeable for walking on. When Doob grass is fairly established, the earthen road becomes very firm and good, as is shown in the road banks of the Jumna cauals. A stratum of $1 \frac{1}{2}$ or 2 feet of good clay would answer every purpose, I imagine.

The embankment roadways are for domestic purposes only, they are not intended for traffic, or for general public use. Strings of carts or cattle, of any description, are prohibited from coming upon the roadway, excepting in the train of a member of the canal establishment; the establishment are specially called upon to use this line for patrol and inspection purposes.

The latter end of March and beginning of April is a favourable period for tree-planting. I take the opportunity, therefore, of pointing out that I am very desirous of establishing lines of mangoe-trees (not grafts) along the canal banks. Trees of this sort require great care and more looking after than others, and I wish to confine the mangoe-tree planting to two lines, one on the right, the other on the left bank. The position of the line on the left bank is to be 10 feet in the rear, or on the left of the 30 feet passage for roadway; that is to say, at a distance of 40 feet from the crest of the interior slope of the embankment. The position on the right bank is to be exactly similar, viz., 40 feet to the right of the interior slope of the embankment.

The trees are to be planted at a distance of 100 feet from each other, so that about 53 plants will he required per mile. At the font of each plant, a ghurra, or kedgeree pot, in the bottom of which a very small hole is perforated, will be buried thus:-

These ghurras will be filled with water periodically and as frequently as may be considered necessary with reference to the moisture required.

I have stated that the mangoe-trees should be planted at distances of 100 feet; I would not diminish this distance, but I would so arrange that at bridges and at mile-stone posts, trees might be thus situated, as at x, x, x, x :-

I shall be glad to hear of the arrangements above described being entered on in the ensuing season.
The following diagrams will show the lining-out which I propose for the roadway and plantations in those places where the section of the canal is thus:-

The roadway, which is to be 20 feet wide, is to have a slight slope externally from Δ to B, so that the drainage may be carried off at the foot of the slope b, c, to drains, as shown at x, which, being situated at about 1,000 feet apart, will deliver the water into the boundary ditches. I see no necessity for going to heavy expense in these escapes; where kunkur is at hand, they can be protected from injury by very simple arrangenents, either by massive blocks or by concrete made with kunkur gravel ; where there is no material but brick, the refuse from kilns, or broken brick which remains on hand after the completion of bridges, may be used with great economy. But in many cases, it is possible that no permanent structure may be required at all. Executive engineers, however, will understand that I have no desire to go to heavy expense in their construction. The drains will be open through the plantations, and not covered, and might be built of the following pattern.

(Signed) P. T. Cadtley, Lieutenant-Colonel, Director Ganges Canal Works.

APPENDIX I．

Comparative Statement of Details regarding

Construction．											Precadtionary
	Voussoirsradiatingfrom one Cen－tre，or fromseveral corre－oponding toCentres ofCurvesof Intrados．	Particular care taken in dressing Bricks generally， or not．	Work－ menship equable through－ out，or not．	Mean Thickness of Joints．	Quantity of Materials in dry state expended，and Dimensions of Bricks．				Total Cubic Feet of Masonry．	Koying performed；in whose presence？Were key bricks fltted into their places as tightly as possible by ordi－ nary means ？Any extra－ ordinary means used？and if so，of what description were they？	How far was earthrork in rear of abutments completed at time cen． tres were struck，and was this earth ramined and watered ？
					血	岕	rid	Bricks， Number and Dimen． sions．			
3 3 3 3 3 3	From one ceatre．	Particular care taken．	Equable through－ out．	$\begin{gathered} \text { From } \\ 3-16^{\prime \prime} \text { to } \\ 5-16^{\prime \prime} \end{gathered}$	$\left\|\begin{array}{c} 1,050 \\ \text { cub. ft. } \end{array}\right\|$	$\begin{gathered} 2,100 \\ \text { cub. ft. } \end{gathered}$	None	$\left\|\begin{array}{c} 99,000 \\ \mathrm{~L}=12 \cdot 01^{\prime \prime} \\ \mathrm{B}=5 \cdot 73^{\prime \prime} \\ \mathrm{D}=2 \cdot 04^{\prime \prime} \end{array}\right\|$	10，306－67	One arch keyed in presence of Mr．W．Kay，and two under superintendence of a mis－ tree．Key bricks carefully dressed，laid in fine mortar， and driven with wooden mallets．	Earthwork completed to a level 3y feet below crown of arches；well watered and ramined．
	1 1ito	Ditto	Ditto	Ditto	Ditto	Ditto	None	Ditto	Ditto	Two arches keyed in presence of Mr．W．Kay，and one in presence of a mistree only， with the same care as above detailed．	Earthwork completed to a level of 1 foot below crown of arches；well watered and rammed．
这	Ditto	Ditto	1）ito	$t^{\prime \prime}$	$\begin{gathered} 1,330 \\ \text { cub. ft. } \end{gathered}$	$\left\{\begin{array}{c} 2,660 \\ \text { cub. t. } \end{array}\right.$	None	$\left\|\begin{array}{c} 1,35,350 \\ 9,9_{3}^{\prime \prime} \\ \hline 4_{4}^{\prime \prime} \times 2_{4}^{\prime \prime} \end{array}\right\|$	11，182．5	Keyed in presence of Mr． Login．The keying was done in the same manner as degcribed in keying the Muhewur bridge arches．	Earth level with top of skewback at hoth alout－ ments ；watered，but not rammed．
	Ditto	1）ito	Ditto	1＂	$\begin{gathered} 1,925 \\ \text { cub. ft. } \end{gathered}$	$\begin{aligned} & 3,850 \\ & \text { cub. ft. } \end{aligned}$	None	$\left\|\begin{array}{c} 1,48,000 \\ 1^{\prime \prime} 2 \times 5^{\prime \prime} 9 \times 24 \end{array}\right\|$	14，265	Partly in presence of Mr．Par－ ker，and partly in presence of Ukbar Khan，mistree，in the asme way us the Mulie－ wur bridge．	Up to within if feet fron surface of roadway． Earth well rammed and watered long be fore commencement of Centres．
浆	Ditto	Ditto	Ditro	11－32＂	$\text { 1,300\} }$ cub. ft.	$\begin{aligned} & 2,600 \\ & \text { cub. ft. } \end{aligned}$	None	$\left\|\begin{array}{c} 1,47,400 \\ 10 \times 5 \times 28 \end{array}\right\|$	12，080	Partly keyed in presence of Capt．Goodwyn，and partly in presence of a mistree． Previously to keying the arches，the layera on each side of the key bricks were wedged back，the wedges being then taken out and the key－bricks tightly ftted in．	Earthwork completed to within 3 feet belor crown of arches，and rammed．

A P P ENDIX I.

Construction of Arches of Bridges on the Ganges Canal.
Measures
lowering Centres.

Any earth or superincumbent weight on haunches of arches whell the centres were struck ?	State of progress of wing and spandril walls at time of lowering centres?	After what interval of tine after keying were centres first lowered ?	Detail of lowering Centres.	Ultimate Sinking of each of three Arches.				Did any cracks appear? If so, what were their position and dimensions, and was their direction parallel or perpendicular to curve of arch?	Did any crushing of bricks take place? and was this owing to inferior material or unequal pressure?	Did any yielding of abutments take place?
					$\begin{aligned} & \text { J. } \\ & \text { E } \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { 号 } \\ & \text { 岂 } \end{aligned}$			
Earth filled in spandrils over haunches to level, as feet below crown of arches?	3 feet below crown of arches.	12 hours	Centres lowered by equal graduation about $\frac{1^{\prime \prime}}{4}$ or $\frac{1_{2}^{\prime \prime}}{}$ at once.		$\frac{3^{\prime \prime}}{\text { ed fr}}$	$\frac{2 t^{\prime \prime}}{\text { m men }}$	$\underbrace{2 \cdot 583^{\prime \prime}}_{\text {ory. }}$	No cracks	No crushing	None.
Ditto, ditto, 1 foot below crown of arches.	Level of cornice.	2 days	Ditto		$5^{\prime \prime}$ $\mathrm{d} \mathrm{fro}$	$\frac{3 \frac{1}{2}^{\prime \prime}}{n \text { men }}$	$\underbrace{}_{\text {tory. } 166^{\prime \prime}}$	Ditto	Ditto	Ditto.
No weight on haunches when centres were being struck.	No spandril masonry; wing walls to level of crown of arches.	Began striking as soon rs the last key-brick was fixed, but the striking not completed till next day.	Began lowering the centres a quarter of an inch, and afterwards half an inch at a time. This was continued till all the centres were clear of the arch.	$\cdot 4^{\prime \prime}$	$\cdot 36^{\prime}$	$\cdot 37{ }^{\prime}$	$\cdot 38{ }^{\prime}$	There were cracks not exceeding • 32" broad along all the arches, 5 feet ahov but liad the spandr with either earth or could not have been not see them along arches. The work centres struck all w may account for arc much, the work b green.	Ditto e the spring; ils been filled masonry, they een, as I could the face of the eing built and ithin 16 days hes sinking so ing perfectly	I did not think at the time that the abutments gave, but since then they appear to have done so. 'The cause, I think, is, that the block on which they rest has sunk.
No	No spandril walls. Wing walls flnished to full height.	12 hours	Half an inch at a time; central parts flrst haunches afterwards.	' $97{ }^{\prime}$	- 24^{\prime}	$\cdot 20^{\prime}$	-27'	No	No	No.
Yes, up to 3 feet below the crown of arches.	No apandril walls built. Wing walls built to 3 ft . below crown of arches.	After twelve hours haunches lowered. After 84 hours all the arches left clear of the centres. Brickwork very moist, through the heavy rain then falling.	Centres lowered one inch at a time, the haunches being lowered that amount first, and then the central parts the same.	\cdot^{23}	- $21{ }^{\prime}$	-25'	- 23 '	No	No	No.

Construction．											Precautio
¢	Voussoirs radiating from one Cen－	Particular care taken	Work－ manship	Mean		tity of state ex imensi	Materi pended ns of	als in dry ，and Bricks．	Total	Keying performed；in whose presence？Were key bricks fltted into their places as	How far was earthwork in rear of abutmenta
$\begin{aligned} & \text { ㅡㅣ } \\ & \text { \# } \\ & \text { Z } \end{aligned}$	sponding to Ceutres of Carves of Intrados．	Bricks generally， or not．	$\begin{aligned} & \text { through- } \\ & \text { out, or } \\ & \text { not. } \end{aligned}$	of Jointe．	淢		号	$\begin{array}{\|c\|} \text { Bricks, } \\ \text { Number } \\ \text { and Dimen- } \\ \text { sions. } \end{array}$	of Masonry．	nary means？Any extra－ ordinary means used ？and if so，of what description were they？	tres were atruck，and was this earth rammed and watered？
$\begin{aligned} & \text { 會 } \\ & \text { 䒼 } \\ & \end{aligned}$	From one centre．	$\begin{gathered} \text { Particular } \\ \text { care } \\ \text { taken. } \end{gathered}$	Equable through－ out．	$\begin{aligned} & 0.28^{\prime \prime}, \text { or } \\ & t^{\prime \prime} \text { nearly. } \end{aligned}$	$\begin{gathered} 1,076 \\ \text { cubic } \\ \text { feet. } \end{gathered}$	$\begin{gathered} 2,152 \\ \text { cubic } \\ \text { feet. } \end{gathered}$	None	$\left\|\begin{array}{c} 7,262 \\ \text { about } 15^{\prime \prime} \\ \times 73^{\prime \prime} \times 3^{\prime \prime} \\ \\ 85,178 \\ 12 \cdot 176^{\prime \prime} \\ 5 \times 86^{\prime \prime} \times \\ \times 2 \cdot 36^{\prime \prime} \end{array}\right\|$	13，069	Keying performed in presence of Mr．T．Login，oflciating executive officer，with ex－ ception of portion of one arch，where greateat sink－ ing subsequently occurred． Key bricks carefully dressed and laid－a pressure of about 1,000 lbs．obtained by use of a lever，in adduril－ iary to it being exerted．	Earthwork well watered and rammed，and com－ pleted to spring of extrados．
g 0 0 0 关	From five centres cor－ responding to carves of intrados．	Ditto	Equable generally， but may have been a little better in faces of arches．	Not ascer－ tained．	$\underbrace{$1,648 cubic }$_{$ Belie near $}$	$\underbrace{\begin{array}{l} 3,296 \\ \text { cubeet. } \end{array}}_{\text {eved to }}$	None be bect．	Side arches， $12^{\prime \prime} \times 6^{\prime \prime}$ $\times 2^{\prime \prime}$ Centre arches， $12^{\prime \prime} \times 6^{\prime \prime \prime}$ $\times 3^{\prime \prime}$	13，734	Keyed in presence of Lieut． E．Fraser，executive engi－ neer．Key bricks driven in with heavy sledge－ham－ mers，a piece of wood being interposed to prevent the bricks splitting．	Earthwork completed to level， 4 feet below crowns of arches；well watered and rammed．
	From one centre．	But little dressing required．	Equable through－ out．	$\downarrow^{\prime \prime}$	$\begin{gathered} 1,3,36 \\ \text { cub. ft. } \end{gathered}$	$\begin{aligned} & 2,632 \\ & \text { cub. ft. } \end{aligned}$	None	$12 \times 6 \times 3$	11，529•00	Keying performed in pre－ sence of Mr．Conductor Gair，and of Sergt．O＇Far－ rell，and superintended by Lieut．Fraser at intervals． Method of keying，the same as at the Munglour Bridge．	Earth completed to level 4 feet below crowns of arches；well watered and rammed．
$$	Ditto	Not	Good in faces，but bad in the interior．	－3703，or 6－16ths nearly．	$\begin{gathered} 1,325 \\ \text { cub. t. } \end{gathered}$	$\begin{aligned} & 2,650 \\ & \text { cub. ft. } \end{aligned}$	None	$\begin{aligned} & 12^{\prime \prime} \times 6^{\prime \prime \prime} \\ & \times 2 \cdot 887^{\prime \prime} \end{aligned}$	11，529•00	Keying of eastern arch per－ formed by mistree；of cen－ tre and weatern arches in presence of Lieut．Sharpe． Method of keying the same as the foregoing．	Earthwork completed to lop of wing walls prior to final lower Ing of centres of both easterm eatern arch was lowered sin inches when the earthen bach－ Ing of the abutment hed only springing line of the elliplteal curve．
$\begin{aligned} & \dot{a} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Ditto	$\begin{gathered} \text { Particular } \\ \text { care } \\ \text { taken. } \end{gathered}$	Perfectly so．	．02＇	$\begin{gathered} 1,194 \\ \text { cub. fl. } \end{gathered}$	$\begin{gathered} 2,388 \\ \text { cub. ft. } \end{gathered}$	None	$\left\lvert\, \begin{gathered} 1 \cdot 16^{\prime} \times 504^{\prime} \\ \times 244^{\prime} \\ =61,868 \\ 1^{\prime} \times 5^{\prime} \times 166 \\ =26,964 \end{gathered}\right.$	11，529 00	In that of Lieut．Sharpe，and key bricks（well fitted） were driven home by sledge hammers．	Earth well watered and rammed to s height of 11 feet above apring of arches．
	Ditto	Much dressing required．	Ditto	0．25\％	$\begin{gathered} 4,030 \\ \text { cub. ft. } \end{gathered}$	$\begin{gathered} 2,015 \\ \text { cub, ft. } \end{gathered}$	None	$12 \times 6 \times 3$	11，529•00	In that of Assistant Overseer Phillips．key bricks dressed and driven in with heavy sledge hammers，a wooden wedge being interposed to splitting．After keying， fine mortar flled in over key bricks．	Ditto，ditto to 4 feet be low arches．

Meabones lowerino Centreb．		Lowering and Removal of Centres，and Regults．								
Any earth or auperincum－ bent weight on haunches of arches when the centres were struck？	State of progress of wing and spandril walls at time of lowering centres？	After what interval of time after keying were centres flrat lowered ？	Detail of lowering Centres．	Ultimate Sinking of each of three Arches．				Did any cracks appear？If so，what were their position and dimensions，and was their direction parallel or perpen－ dicular to curve of arch 9	Did any crush－ ing of bricks take place？and was this owing to inferior material or unequal pressure？	Did any yielding of abutments take place？
				$\begin{aligned} & \text { 薄 } \\ & \text { 品 } \end{aligned}$	安	帯	駕			
No earth flled in apandrils．	Level with spring of extrados．	1 inch immediately	After flrst lowering to close joints a week elapsed before any further lowering took place．The centres were then lowered $2^{\prime \prime}$ at termination of each week till clear of arch，by grada－ tions of $\frac{1}{4}$ of an inch at a time．	Keyed by mlatree． 6．6＂ Down strenm slde， кеуед． Login． $5 \frac{1}{2}{ }^{\prime \prime}$	$\left\lvert\, \begin{aligned} & \text { Keyed } \\ & 5 \cdot 52^{\prime \prime} \end{aligned}\right.$	$\underbrace{\text { by }}_{5 \cdot 4^{\prime \prime}}$	$\frac{\text { Login. }}{5 \cdot 755^{\prime \prime}}$	A slight crack along each of the haunches， but not sufficiently open to admit the point of a trowel．	No	No．
Earth flled in spandrils over haunches to level， 4 feet below crowns of arches．	4 feet below crowns of arches．	Lowered 1 inch immediately after keying．	Centres lowered a quarter of an inch at a time from sides towards centres of arches，after interval of one month after keying．	$3 \cdot 7 \prime$	3•7＇${ }^{\prime \prime}$	4．5＇	3•96＂	In the north face of the eastern arch a few bricks were cracked in the cent The direction of the curve which arose，th the masonry in the fa in the interior．	No re of arch and haunch crack e executive engi being slightly	No． eastern haunch． eing parallel to eer thinks，from better than that
Ditto	Ditto	Ditto	Ditto	$1 \cdot 2^{\prime \prime}$	2．08＂	1－44＂	1．57＂	No crack．	No	No．
No superin－ cumbent weight on haunches be－ yond that of the spandril walls them－ selves．	Wing walls level with point where crown of ex－ trados meets imports of arches．Span－ dril wally 2 feet 8 inches higher．	Ditto	Ditto	13＂ Still		$\frac{15^{\prime \prime}}{\text { 1 cent. }}$		Many cracks parallel to the curve，and per－ pendicular to it，both ip faces and interior of arches in the middle； more particularly shown at the haunches．	Considerable crushing in the faces of arches about the centres and haunches．	None．
None．	Both built to 11 feet above spring of arches．	Immediately	They were lowered in the ordinary manner， from haunch to crown， $t^{\prime \prime}$ at a time（6），six days after keying．	1－19＇	2＇23＂	$12^{\prime \prime}$	1．64＂	No	No	No．
Several thou－ sand dry bricks placed on ependrils．	$4^{\prime} 8^{\prime \prime}$ below crown of arches．	Lowered one inch immediately．	Same as at Liburheri．	3－21＂	3•26＂	5•17＂	3．88＂	A few slight cracks on the centre of eastern arch parallel to ｜curve．	A slight crush－ ing took place on north face of east arch， but not suffl－ ciently to dis－ place the face of bricks．	No．

Construction．											Precationahy preparatory 10
	Voussoirs radiating from one Cen－ tre，or from several corre－ sponding to Centres of Curves of Intrados．	Particular care taken in dressing Bricks generally， or not．	Work－ manship equable through－ out，or not．	Mean Thickness of Joints．	Quantity of Materials in dry state expended，and Dimensions of Bricks．				Total Cubic Feet of Masonry．	Keying performed；in whose presence？Were key bricks fitted into their places as tightly as possible by ordi－ nary means？Any extra－ ordinary means used ？nad if so，of what description were they？	How far was earth． work in rear of abut． ments completed at time centres were struck，and was this earth rammed and watered？
					守		号	Bricks， Number and Dimensions．			
$\begin{aligned} & \dot{\vdots} \\ & \stackrel{\rightharpoonup}{3} \\ & \text { añ } \end{aligned}$	From one centre．	Much dressing not required．	Perfectly sо．	$\begin{aligned} & \text { From } \\ & 4-16^{\prime \prime} \text { to } \\ & 5-16^{\prime \prime} \end{aligned}$	$\left\|\begin{array}{c} 2.662 \\ \text { cub. tt. } \end{array}\right\| \text { c }$	$\begin{aligned} & 1,331 \\ & \text { cub. ft. } \end{aligned}$	None	$\begin{gathered} 68,000 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \end{gathered}$	10，773•00	In that of Assistant Overseer Phillips，key bricks dressed and driven in with heary wedge being interposed to prevent the arches＇bricks from splitting．After keying，fine mortar flled in over key bricks．	Earth well watered and rammed to a height of 5 feet below arches．
	Ditto	Well dressed．	Ditto	． 23 ＂	$\begin{aligned} & 4.400 \\ & \text { cub. ft. } \end{aligned}$	$\begin{aligned} & 9,200 \\ & \text { cub. ft. } \end{aligned}$	None	$\left\lvert\, \begin{gathered} 6,000 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \\ \text { Number of } \\ \text { native bricks } \\ \text { not ascertained. } \end{gathered}\right.$	10，828．00	Ditto Ditto	Ditto ditto， 2 feet ditto ditto．
	Ditto	Ditto	Ditto	$\cdot 24{ }^{\prime \prime}$	$\left\|\begin{array}{c} 5,612 \\ \text { cub. fl. } \end{array}\right\|$	$\begin{gathered} 2,896 \\ \text { cub. ft. } \end{gathered}$	None	Ditto	11，859．00	Ditto，ditto Assiatant Over－ seer Dillon，ditto，ditto．	Ditto Dilto
	Ditto	$3^{\prime \prime}$ bricks drested， ntive bricks not dressed．	Ditto	1－5＂nearly	$\begin{aligned} & 3,906 \\ & \text { cub. ft. } \end{aligned}$	$\begin{gathered} 1,953 \\ \text { cub. ft. } \end{gathered}$	None	$\left\lvert\, \begin{array}{c\|} 3,035 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \\ \text { Number of } \\ \text { native bricks } \\ \text { not ascertained. } \end{array}\right.$	10，741 1 ． 00	Ditto，ditto，Assistant Over－ seer Mills，ditto．	Completed to level of 4 feet below crowns of arches and rammed．
	From five centres cor－ responding to curves of Intrados．	But Little dressing．	Generally so，but a little better in faces of arches．	1－4＂	$\left\lvert\, \begin{aligned} & 2,980 \\ & \text { cub. ft. } \end{aligned}\right.$	$\begin{gathered} 1,786 \\ \text { cub. ft. } \end{gathered}$	None	$\begin{gathered} 122,000 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \end{gathered}$	15，715•84	Two arches keyed in presence of Mr．Read and Sergt． Mills，and one by Sergt． Mills．Key bricks driven in as before．	Well watered and rammed；com． pleted to level below crowns of arches．
药	From one centre．	$3^{\prime \prime}$ bricks dressed， native bricks not．	$\left\lvert\, \begin{gathered} \text { Equable } \\ \text { throaghout } \end{gathered}\right.$	1－5＂${ }^{\prime \prime}$ nearly	$\left\lvert\, \begin{aligned} & 4,244 \\ & \text { cub. ft. } \end{aligned}\right.$	$\left\|\begin{array}{c} 2,122 \\ \text { cub. ft. } \end{array}\right\|$	None	$\begin{array}{c\|} 3,050 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \\ \text { Number of } \\ \text { native bricks } \\ \text { Dot ascertained. } \end{array}$	10，741］ 00	In presence of Sergt．Mills． Key bricks as before．	Earth rammed；com． pleted to 4 feet below crowns of arches．
皆	Ditto	Particular care taken．	Ditto	3－16＂	$\left\lvert\, \begin{gathered} 5,176 \\ \text { cub. fl. } \end{gathered} .\right.$	$\begin{gathered} 2,588 \\ \text { cub. ft. } \end{gathered}$	None	$\begin{gathered} 3,400 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \\ \text { Native bricks, } \\ 9,000 \text { cub. ft, } \\ 4^{\prime \prime} \times 3^{\prime \prime} \times 1^{\prime \prime} \end{gathered}$	10，828．00	In presence of Sergt．Dillon． Ditto，ditto．	Earthwork com－ pleted to crown of arch of passage．
	Ditto	Great care taken．	Of equal quality tirroughout rather better at faces of srches．	$\cdot 175{ }^{\prime \prime}$	$\left\|\begin{array}{l} 3,696 \\ \text { cub. ft. } \end{array}\right\|$	$\begin{aligned} & 1,848 \\ & \text { cub. ft. } \end{aligned}$	None	$\left.\begin{gathered} 105,780 \\ 12^{\prime \prime} \cdot 4 \times 6 \times 2 \cdot{ }^{\prime \prime} 66 \end{gathered} \right\rvert\,$	15，939．00	In that of Lieat．Sharpe． Keyed at at Belra．	To within a foot of crown of arch， rammed and ma－ tered

Measures lowening Centres．		Lowerina and Removal of Centres，and Regulte．								
Any earth or superincum－ bent weight on hauncles of arches when the centres were struck ？	State of progress of wing and spandril walls at time of lowering centres？	After what interval of time after keying were centres first lowered ？	Detail of lowering Centres．	Ulimate Sinking of each of three Arches．				Did any cracke appear ？If so，what were their position and dimensions，and was their direction parallel or perpen－ dicular to curve of arch ？	Did any crush－ ing of bricks take place？and was this owing to inferior material or unequal pressure？	Did any yield－ ing of abat－ ments take place？
					$\begin{gathered} \stackrel{\dot{4}}{\stackrel{\rightharpoonup}{0}} \\ \stackrel{0}{心} \end{gathered}$		嶌			
Several thou－ sand dry bricks placed to level 3 feet below crowns of arches．	$4^{\prime} 6^{\prime \prime}$ below crown of arches．	Lowered 1 inch immediately．	Same as at Liburheri．	$2 \frac{1}{4}^{\prime \prime}$	$22^{\prime \prime}$	$3^{\prime \prime}$	24＂	A few cracke on each arch，parallel to curve， and scarcely perceptible．	No	No．
No	4 feet ditto	1 month	Earthen centres． Removed a month after keying．	－06＂	－04＂	－03＇	－04＂	No	No	No．
No	Ditto	Ditto	Ditto	－03 ${ }^{\prime \prime}$	$\cdot 05^{\prime \prime}$	－07＇	－05＂	No	No	No．
No	Wing walls to level of inner crown of arches；no masonry in spandrils．	2 months and 6 days．	Ditto：clear of arches． 3 months and 26 days after leying．	\cdots	\cdots	\cdots	\cdots	Very slight opening at haunches．	No	No．
Earth filled in spandrila over arches to $2 \frac{3}{8}$ feet below crowns of arches．	$2 \downarrow$ feet below crowns of arches．	2 months	Ditto Ditto 2 months and 10 days．	$1^{\prime \prime}$	$3^{\prime \prime}$	$4^{\prime \prime}$	者＂	No	No	No．
No	Wing walls to level of inner crown of arches．	2 months and 1 day．	Ditto Ditto 3 months and 26 days．	\cdots	\cdots	\cdots	\cdots	Very slight openings at haunches．	No	No．
No	Wing walls up to level of crown of arched passage．	6 monthe．	Ditto Earth removed equably throughout．	29 ${ }^{\text {＂}}$	$23^{\prime \prime}$	$3^{\prime \prime}$	29＂	A few cracks on each arch，parallel to curve， but scarcely perceptible．	No	No．
Spandril walls built up to 19． below crown of arch． No earth．	Wing walls to l＇below extrados， spanidrils being $1{ }^{\prime}{ }^{\prime}$ below intrados．	25 days	The centres（earthen） were flrst perforated by three tunnels，one under crown 8^{\prime} wide， supporting the arch． to back，and digging under haunchea，lik crushing the earth，and	$\cdot 18^{\prime}$ and a Four outw wise and eet	$\cdot 18^{\prime}$ intery angs ds（i． orkin ng eq	$\cdot 18^{\prime}$ ls of f men ．，tow outw ably	$\cdot 18^{\prime}$ \qquad by on ere th ds th de． its be	No e on either side 7^{\prime} wide； en set to work，two in the haunches），and the oth As the piers lessened the ringe．	\qquad thus leaving 4 centre tunnel，s er two excerati arch came dow	No arthen piers anding back g the piers gradually，

Construction．											Precadtionaby preparatory to
	Voussoirs radiating from one Cen－	Particular care taken	Work－ manship	Mean		state Dimens	of Mate expend sions of	rials in dry d，and Bricks．	Total	Keying performed；in whose presence？Were key bricks fitted into their places as	How far was earth－ work in rear of abnt－
	sponding to Centres of Curves of Intrados．	Bricks generally， or not．	through－ out，or not．	of Joints．	兑		$\begin{aligned} & \text { 品 } \\ & \text { 品 } \end{aligned}$	Bricks， Number and Dimensions．	of Masonry．	nary means？Any extra－ ordinary means used ？and if so，of what description were they？	struck，and was this earth rammed and watered？
$\begin{aligned} & \dot{2} \\ & 0 \\ & 0 \\ & 2 \\ & 8 \\ & 4 \end{aligned}$	From one centre．	Great care taken．	Of equal quality throughout rather better at faces of arches．	－ $1517^{\prime \prime}$	$\left\|\begin{array}{c} 3,100 \\ \text { cub. ft. } \end{array}\right\|$	$\left.\begin{gathered} 1,550 \\ \text { cub. ft. } \end{gathered} \right\rvert\,$	None	$\begin{gathered} 88,722 \\ 12 \cdot 2^{\prime \prime} \times 6 \cdot 12^{\prime \prime} \\ \times 2 \cdot 9^{\prime \prime} \end{gathered}$	13，373 $\cdot 00$	In that of Lieut．Sharpe， keyed as at Belra．	To the level of top of skew backs or opring of extrados or arch；well we－ tered and rammed．
$\begin{aligned} & \dot{8} \\ & \text { ́ } \\ & 0 \\ & \hline 6 \\ & 5 \\ & \hline \end{aligned}$	Ditto	Ditto	Equable throughout	$\begin{gathered} 3-16^{\prime \prime} \text { to } \\ 5-16^{\prime \prime} \end{gathered}$	$\left\lvert\, \begin{gathered} 2,042 \\ \text { cub. ft. } \end{gathered}\right.$	$\left\|\begin{array}{c} 1,021 \\ \text { cub. ft. } \end{array}\right\|$	None	$\begin{gathered} 65,208 \\ 2 \cdot 64^{\prime \prime} \times 6 \cdot 22^{\prime \prime} \\ \times 12 \cdot 52^{\prime \prime} \end{gathered}$	8，951 00	In that of Mr．Conductor Gair． Keying as before．	Three feet above spring of arches， and ditto ditto．
$\begin{aligned} & \text { 병 } \\ & \text { O } \\ & \text { 2 } \end{aligned}$	Ditto	Ditto	Ditto	1－4＂	$\left.\begin{gathered} 2,684 \\ \text { cub. ft. } \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} 1,342 \\ \text { cub. } \mathrm{it} . \end{array}\right\|$	None	$\begin{gathered} 79,885 \\ 12 \frac{1}{2}^{\prime \prime} \times 6 f^{\prime \prime} \times 2 y^{\prime \prime} \end{gathered}$	9，803 38	Ditto Ditto	Earthwork com－ pleted to level with crown of arches， principally sand， well rammed and watered．
	Ditto	Ditto	Ditto	1－4＂	$\left.\begin{array}{r} 2,598 \\ \text { cub. ft. } \end{array} \right\rvert\,$	$\left\lvert\, \begin{gathered} 1,299 \\ \text { cub. ft. } \end{gathered}\right.$	None	$\begin{gathered} 76,985 \\ 12 \frac{1}{2}^{\prime \prime} \times 64^{\prime \prime} \times 2 \frac{3}{3}{ }^{\prime \prime} \end{gathered}$	9，803－38	In that of Mr．Conductor Gair and Keahuree Misturee at intervals．Detail as before．	Earthwork com－ pleted to level of cornice，well rammed and watered．
$\begin{aligned} & \text { ذ } \\ & \text { 品 } \\ & \text { 品 } \end{aligned}$	Ditto	Ditto	Ditto	$\begin{aligned} & 1-8^{\prime \prime} \text { to } \\ & 5-16^{\prime \prime} \end{aligned}$	$\left\|\begin{array}{c} \mathbf{3 , 0 8 7} \\ \text { cab. ft. } \end{array}\right\|$	$\begin{gathered} 1,029 \\ \text { cub. ft. } \end{gathered}$	None	$\begin{gathered} 79,580 \\ 12 \cdot 4^{\prime \prime} \times 6.3^{\prime \prime} \\ \times 2^{\prime \prime} 5-7 \text { the. } \end{gathered}$	9，803 38	Ditto Ditto	To crowne of arches， ditto，ditto．
	Ditto	But little care required．	Ditto	1－4＂	$\left\lvert\, \begin{gathered} 2,349 \\ \text { cub. ft. } \end{gathered}\right.$	$\begin{gathered} 783 \\ \text { cub. ft. } \end{gathered}$	None	$\begin{gathered} 73,800 \\ 12 \cdot 4^{\prime \prime} \times 6 \cdot 3^{\prime \prime} \\ \times 2^{\prime \prime} 5-7 \text { ths. } \end{gathered}$	8，950－92	Ditto ditto Ramsook Misturee ditto ditto．	To 6 feet above springing arches， ditto ditto．
$\begin{aligned} & \text { 足 } \\ & \text { 䓂 } \\ & \text { B } \end{aligned}$	Ditto	Ditto	Ditto	1－8＂to 1－4＂	cub. ft.	None	None	$\begin{gathered} 75,000 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \end{gathered}$	9，355 50	In that of Corporal Rae． Detail as before．	To apring of extra－ dors，well rammed and watered．
	Ditto	Ditto	Ditto	$1-8^{\prime \prime}$ to 3－8＂	cub. f.	None	None	$\left\lvert\, \begin{gathered} 58,000 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \\ 8,000 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime} \end{gathered}\right.$	9，355 50	Ditto Ditto	Ditto ditto
	Ditto	Ditto	Ditto	$1-8^{\prime \prime}$ to $1.4^{\prime \prime}$	$\left\lvert\, \begin{gathered} 3,680 \\ \text { cub. ft. } \end{gathered}\right.$	None	None	88.600 $12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$	12，474．00	Ditto Ditto	Ditto ditto

Measures lowering Centree．		Lowebing and Removal of Centres，and Results．								
Any earth or superincum－ bent weight	State of progress of wing and spandril walls at time of lowering centres？	After what interval of time after keying were centres Arst lowered ？	Detail of lowering Centres．	Ultimate Sinking of each of three Arches．				Did any cracke appear ？If so，what were their position and dimensions，and was their direction parallel or perpen－ dicular to curve of arch ？	Did any crush－ ing of bricks take place？and was this owing to inferior material or unequal pressure？	Did any yield－ ing of abut－ ments take ．place？
when the centres were struck ？				$\begin{aligned} & \text { 荡 } \\ & \text { 促 } \end{aligned}$		出				
None	Wing walls level with intrados of crown of arches．Span－ drils，none．	1 day	See Sirmhanna，p． 163	－ 23^{\prime}	$\cdot 22^{\prime}$	$\cdot 23^{\prime}$	$\cdot 226{ }^{\prime}$	A few bricks were found cracked in the face of the haunch of the last arch some days subse－ quent to final lowering of centres．	Slightly at crown of arch ； attributed to unequal settling．	No．
Ditto	Wing walls $3^{\prime \prime}$ above spring of arches． Spandril walls not commenced．	2 months and 6 days．	In the same manner as at Sirdhanna，but slight variation in width of tunnels．	$13^{\prime \prime}$	112 ${ }^{\prime \prime}$	$12^{\prime \prime}$	$1{ }^{\prime \prime}$	No	No	No．
Ditto	Wing walls to level of cornice ns well as out－ side wall of passage． No spandril walls．	15 days． Arches were clear of centres in 10 days after．	Ditto	$13^{\prime \prime}$	$14^{\prime \prime}$	$11^{\prime \prime}$	$1 \mathrm{~S}_{1}^{\prime \prime}$	No	No	No．
Ditto	Ditto	2 days． Arches clear in 15 days efter．	Ditto	$11^{\prime \prime}$	1圱	$8^{\prime \prime}$	$1 \frac{1}{\prime \prime}^{\prime \prime}$	No	No	No．
Ditto	Wing walls to level of crowns of arches． No spandrils．	Immediately． Centres were clear in 26 days．	Ditto	1－2＂	$1^{\prime \prime}$	1．2＇	$1 \cdot 13^{\prime \prime}$	No	No	No．
Ditto	Wing walls 6 feet above apringing of arches． No spandrils．	Clear in 36 days after keying．	Ditto	$1 \cdot 48^{\prime \prime}$	1－5＇	1．65＂	$1.55^{\prime \prime}$	No	No	No．
Ditto	Wing walls to spring of extrados．	1 month	Ditto	1．55＂	1－5＂	［ $67{ }^{\prime \prime}$	1．54＂	No	No	No．
Ditto	Ditto	20 daya	Ditto	$1 \cdot 6^{\prime \prime}$	$1 \cdot 54 /$	$1 \cdot 5^{\prime \prime}$	1．54＂	No	No	No．
Ditto	Ditto	2 months	Ditto	$1 \cdot 58^{\prime \prime}$	1－53＇	1－5＇	1－52＂	No	No	No．

Consthoction．											Precattionarp
	Voussoirs radiating from one Cen－	Particnlar care taken	Worls－ manship	Mean		ntity of state Dimen	of Mate expende ions of	rials in dry d，and Bricks．	Total	Keying performed；in whose presence？Were key bricks fltted into their places as	How far was earth－ work in rear of abut－
	sponding to Centres of Curves of Intrados．	Bricks generally， or not．	tbrough－ out，or not．	of Joints．	-تٌ		-⿱艹⿹勹口	Bricks， Number and Dimensions．	of Masonry．	nary means？Any extra－ ordinary means used？and if so，of what description were they？	time centres were struck，and was this earth rammed and watered？
	From one centre．	Yes	Yes	－ $10^{\prime \prime}$ to $\cdot 3^{\prime \prime}$	$\begin{aligned} & 3,220 \\ & \text { cub. ft. } \end{aligned}$	None	None	$\begin{gathered} 58,403 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \end{gathered}$	7，601	In that of Lieut．Merrick． Key bricks driven in with wooden mallets．	Abutments rested againet natural soil to apring of arch．
送	Ditto	Ditto	Ditto	$\cdot{ }^{\prime \prime} 4$ to $\cdot 23$	$\begin{array}{\|c\|} 2,072 \\ \text { cub.f. } \end{array}$	Ditto	Ditto	$\begin{aligned} & \mathbf{6 0 , 9 6 8} \\ & \text { Ditto } \end{aligned}$	Ditto	Ditto	Ditto．
	Ditto	Ditto	Ditto	－ 0 ＇63 to－ 22	$\begin{aligned} & 2,462 \\ & \text { cub. } \mathrm{f} . \end{aligned}$	Ditto	Ditto	$\begin{aligned} & \text { Ditto } \\ & \text { Ditto } \end{aligned}$	Ditto	Ditto	Ditto．
㐫	Ditto	Ditto	Ditto	－ 12 to $\cdot 28$	$\begin{aligned} & 2,636 \\ & \text { cub. } . \mathrm{t} . \end{aligned}$	Ditto	Ditto	$\begin{aligned} & \text { 61,988 } \\ & \text { Ditto } \end{aligned}$	Ditto	Ditto	Ditto．
i	Ditto	Ditto	Ditto	3－1＇6 to $5-1 / 6$	$\begin{gathered} \mathbf{2 , 3 7 0} \\ \text { cub. ft. } \end{gathered}$	Ditto	Ditto		7，623	In that of Ansist．－Overseer Virgiro． Keyed as before．	Ditto within 2 feet of ditto．
$\begin{aligned} & \dot{H} \\ & \text { B } \\ & 0 \\ & 0 \end{aligned}$	Ditto	Ditto	Ditto	Ditto	$\left\{\begin{array}{l} 2,330 \\ \text { cub. f. } \end{array}\right.$	Ditto	Ditto	$\begin{gathered} 57,500 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \end{gathered}$	Ditto	Ditto	Ditto，ditto，on eat side ；on west side level with spring of arch．

Mensures

Lowering and Removal of Centres, and Results.
lowening Centres.

Measones lowering Centres．		Lowering and Removal of Centreg，and Regults．								
Any earth or superincum－ bent weight on haunches of arches when the centres were struck？	State of progress of wing and spandril walls at time of lowering centres？	After what interval of time after keying were centres first lowered ？	Detail of lowering Centres．	Ultimate Sinking of each of three Arches．				Did any cracks appear ？If so，what were their position and dimensions，and was their direction parallel or perpen－ dicular to curve of arch ？	Did any crush－ ing of bricks take place？and was this owing to inferior material or unequal pressure？	Did any yield－ ing of abut－ ments take place？
					$\begin{aligned} & \text { シ } \\ & \text { 品 } \end{aligned}$	蔦				
Kucha pukka masonry built in over haunches，to 5 feet above spring of arch．	Wings and spandrils not commenced．	24 hours	Centre portion removed at first time of striking；remain－ ing portion several weeks after．	－ $12 \times$	$\cdot 18^{\prime}$	$\cdot 15{ }^{\prime}$	$\cdot 15^{\prime}$	Owing to work being carried on in the rains， the work of two of the arches had to be taken down，the cracks were so considerable prior to keying．None appeared after keying of arches．	No	No．
No．	$\begin{gathered} \text { Not } \\ \text { commenced } \end{gathered}$	Ditto	Ditto	－ $21{ }^{\prime}$	$\cdot 17 \prime$	$\cdot 12^{\prime}$	$\cdot 16{ }^{\prime}$	Same as at Pukhana	No	No．
Spandrils of arches filled in to a height of 2 feet with kucha pukka mesonry．	Wing walls to 5 feet above spring of arch． Spandrils not commenced．	2 days	As at Jutpoors	－ $25{ }^{\prime}$	$\cdot 18^{\prime}$	$\cdot 18{ }^{\prime}$	－${ }^{\prime}$	Small cracks about a knife＇s edge in thickness usually appeared in third layer after arch had progressed 7 ft ．from springing；always per－ pendicular to curve．	No	No．
Ditto	Ditto ditto on up－stream side on down－ stream side to level of cornice． Spandrils not commenced．	Ditto	Ditto	－ 1^{\prime}	$\cdot 1^{\prime}$	$\cdot 15^{\prime}$	－ 116	Ditto	No	No．
Ditto	Same as at Mamun．	Ditto	Ditto	－ 25^{\prime}	－ $25{ }^{\prime}$	$\cdot 25^{\prime}$	－25＇	Ditto	No	No．
Ditto	Same as at Uchuja．	Ditto	Ditto	$\cdot{ }^{\prime}$	$\cdot 1^{\prime}$	$\cdot 14^{\prime}$	$\cdot 113{ }^{\prime}$	Ditto	No	No．
Earth from centres fllled on haunches as centres were lowered．	Wing walls to top of towing path erch．	Next morning	Ditto	$\cdot 16{ }^{\prime}$	$\cdot 16{ }^{\prime}$	$\cdot 25^{\prime}$	$\cdot 19^{\prime}$	No	No	No．
Ditto	Ditto to apring of ditto ditto．	Ditto	Ditto	$\cdot 16^{\prime}$	\cdots	－08＇	－ $08{ }^{\prime}$	No	No	No．
VOL．II．										

Conethuction．											Precautionary PREPabatoly to
品	Voussoirs radiating from one Cen－	Particular care taken	Work－ manship	Mean		antity state Dimen	f Mate expende ions of	rials in dry ed，and Bricks．	Total	Keying performed；in whose presence？Were key bricks fitted into their places as	How far was earth－ work in rear of abut．
	sponding to Centres of Curves of Intrados．	Bricks generally， or not．	through－ out，or not．	of Joints．	$\stackrel{\text { U }}{\underset{H}{\mid}}$		$\begin{aligned} & \text { J. } \\ & \text { D. } \end{aligned}$	Bricks， Number and Dimensions．	of Masodry．	nary means？Any extra－ ordinary means used？and if so，of what description were they？	struck，and was this earth rammed and watered？
d H H H 鬲	From one centre．	Yes	Yes	－013 ${ }^{\prime}$	$\begin{aligned} & \text { 1,046 } \\ & \text { mde. } \end{aligned}$	None	None	$\begin{gathered} 54,518 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \end{gathered}$	6，396 $\frac{1}{2}$	In that of Lieut．Home， Keyed as before．	To top of towing． path arches，well rammed and watered．
$\begin{aligned} & \text { 菖 } \\ & \text { 曷 } \\ & \text { 品 } \\ & \text { N } \end{aligned}$	Ditto	Ditto	Ditto	．032 ${ }^{\prime}$	$\begin{aligned} & 1,476 \\ & \text { mds. } \end{aligned}$	Ditto	Ditto	$\begin{gathered} 44,000 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \\ 800 \text { maunds } \\ \text { kunkur. } \end{gathered}$	6，933	In that of Lieut．Merrick， Keyed as before．	Not commenced
$\begin{aligned} & \text { d } \\ & \text { 웁 } \\ & \text { E } \end{aligned}$	Ditto	When found requisite， Yes．	Ditto	Ditto	$\begin{aligned} & \text { 1,532 } \\ & \text { mids. } \end{aligned}$	Ditto	Ditto	$\begin{gathered} 64,680 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \end{gathered}$	8，223	As in the preceding bridge	Ditto．
	Ditto	Ditto	Ditto	Ditto	$\begin{aligned} & 1,491 \\ & \text { mds. } \end{aligned}$	Ditto	Ditto	$\begin{aligned} & 43,000 \\ & \text { Ditto } \end{aligned}$	6，933	Ditto	Ditto．
	Ditto	Ditto	Ditto	Ditto	$\begin{aligned} & \text { 1,256 } \\ & \text { mde. } \end{aligned}$	Ditto	Ditto	43，000 Ditto 800 maunds kunku\％．	Ditto	Ditto	Ditto．
$\begin{aligned} & \dot{5} \\ & \frac{5}{4} \\ & \stackrel{y}{4} \\ & \sqrt[4]{2} \end{aligned}$	Ditto	Ditto	Ditto	Ditto	$\begin{aligned} & \text { l,666 } \\ & \text { mde. } \end{aligned}$	Ditto	Ditto	$\begin{aligned} & 59,600 \\ & \text { Ditto } \\ & \text { 800 maunds } \\ & \text { kunkur. } \end{aligned}$	8，223	Ditto	Ditto．
	Ditto	No．	Ditto	7－16＂	$\left\|\begin{array}{c} 2,650 \\ \text { cub. ft. } \end{array}\right\|$	Ditto	Ditto	$\begin{gathered} 47,000 \\ 11 \cdot 6^{\prime \prime} \times 5 \cdot 8^{\prime \prime} \\ \times 23^{\prime \prime} \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \end{gathered}$	5，545•125	Keyed by Mistree，without any superintendence．Key bricks driven in by mallets．	Level with crown of arch；not rammed nor watered．
$\frac{\underset{2}{4}}{\substack{0 \\ 0}}$	Ditto	No．	Ditto	1－3＂	$\left(\left.\begin{array}{c} 2,060 \\ \text { cub. ft. } \end{array} \right\rvert\,\right.$	Ditto	Ditto．	$\begin{gathered} 43,700 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \end{gathered}$	5，068－ 125	Under Lieut．Dumblaton， ditto ditto．	Ditto．
	Ditto	No．	In centre and left arches tolerably 80. In right arch mach finer from half way up to key．	$\begin{array}{\|c\|} \text { Right } \\ 1-3^{\prime \prime} \\ \text { centre and } \\ \text { left } \\ 1-4^{\prime \prime} \end{array}$	$\left\|\begin{array}{l} 2,050 \\ \text { cub. ft. } \end{array}\right\|$	Ditto	Ditto	$\begin{gathered} 43,800 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \end{gathered}$	5，068－ 125	Ditto	Ditto．

Measures

Lowering and Removal of Centres, and Resuits.
lowering Centres.

Measures lowering Centacs．		Lowering and Removal of Centres，and Regdlts．								
Any earth or superincum－ bent weight on haunches of arches when the centres were struck ？	State of progress of wing and spandril walls at time of lowering centres？	After what interval of time after keying were centres first lowered ？	Detail of lowering Centres．	Ulimate Sinking of each of three Arches．				Did any cracks appear ？If so，what were their position and dimensions，and was their direction parallel or perpen－ dicular to curve of arch？	Did any crush－ ing of bricks take place？and was this owing to inferior material or unequal pressure？	Did any yield ing of abut－ mente take place？
					范	荷	$\begin{aligned} & \text { 䔍 } \\ & \text { 总 } \end{aligned}$			
A hearting of masonry built above top of akewback，and earth filled over this to crown of arches．	\cdots	3 days	Centres being of earth were dug out；this operation lasted 4 days．	\ldots	\cdots	\cdots		None traceable in any joints，though there were in the hounches， prior to striking，cracks in the superincumbent masonry．	No	No．
As in the fore－ going bridge．	\cdots	Ditto	As in the foregoing bridge．	\cdots	\cdots	\cdots	$\underset{1^{\prime \prime}}{\text { Ditto }}$	Slight separations visible at skewback， but at no other places．	No	No．
None	Wing walls built．	Ditto	Ditto	．．．	\cdots	．．	Ditto	No	No	No．
As at Keylum－ poor，but no earth over．	．．．	Ditto	Ditto	\cdots	\cdots	．．	Ditto	Separations at each skewback ；at left end of left arch being consi－ derable，joint being thick；other separations very slight．	No	No．
None	Wing walls built．	$\cdots \quad \cdots$	Ditto	\cdots	\cdots	\cdots	Ditto	A slight separation at one end of springing of riglit arch，and one in the same near the crown．	No	No．
Ditto	Ditto partly built．	\cdots	Ditto	． $03{ }^{\prime}$	$\cdot 00{ }^{\prime}$	－015＇	－015＇	A ditto，but distinct crack perceptible at springing on right side of centre arch ；very slight hair cracks might perhaps be perceived in all the haunchea，but they were doubtful．	No	No．
Ditto	Ditto	$\cdots \quad$ ．．．	Ditto	－025＇	$\cdot 01{ }^{\prime}$	－03 ${ }^{\text {r }}$	$\cdot 21^{\prime}$	Very slight hair cracka perceptible for a time in all the baunches；most marked one in right side of right arcli－a sheet of paper might have been put in this，but no more．	No	No．

Construction．											Precattionabi
安安	Vousboirs radiating from oneCen	Particalar care taken	Work－ manship	Mean		$\begin{aligned} & \text { ntity } \\ & \text { stat } \end{aligned}$ Dime	$\begin{aligned} & \text { Ma } \\ & \text { xpen } \\ & \text { ons } \end{aligned}$	rials in dry ed，and Bricks．	Total	Keying performed；in whose presence？Were key bricks fitted into their places as	How far was earth． work in rear of abut
	severa，corre sponding to Centres of Curves of Intrados．	$\begin{gathered} \text { Bricks } \\ \text { generally, } \\ \text { or not. } \end{gathered}$	through－ out，or not．	of Joints．	完		$\begin{aligned} & \text { ت゙ } \\ & \text { が } \end{aligned}$	Bricks， Number and Dimensions．	of Masonry．	nary means？Any extra－ ordinary means used？and if so，of what description were they？	time centres were struck，and was this earth rammed and watered？
	From one centre	Dressed， but not radiated．	Yes	1－8＂	$\begin{gathered} 1,320 \\ \text { cub. ft. } \end{gathered}$	\cdots	\cdots	$\begin{array}{c\|} 32,592 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 24^{\prime \prime} \end{array}$	4，151 $\cdot 4$	Same as at Jurrowlee	None
$$	Ditto	Ditto	Ditto	Ditto	$\begin{gathered} 1,280 \\ \text { cub. ft. } \end{gathered}$	\cdots	\cdots	$\left\|\begin{array}{c} 32,000 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 22^{\prime \prime} \end{array}\right\|$	4，035 37	Ditto	Ditto
ぶ	Ditto	Dito	Ditto	1－4＂	$\left(\begin{array}{l} 1,566 \\ \text { cub. ft. } \end{array}\right.$	\cdots	\cdots	$\left\|\begin{array}{c} 37,152 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 22^{\prime \prime} \end{array}\right\|$	4，404•15	In presence of Ex．Engineer and Assistant Overseer． Keyed as before．	Ditto
$\underset{\underset{\leftrightarrow}{4}}{\stackrel{\leftrightarrow}{4}}$	Ditto	Yes	Ditto	1－4＂	$\left\lvert\, \begin{aligned} & 1,425 \\ & \text { cub. ft. } \end{aligned}\right.$	\ldots	\cdots	$\begin{gathered} \text { 3,876 cub. feet } \\ \text { stone. } \end{gathered}$	3，976	In presence of Assistant Overseer． Key bricks driven in as before．	Not stated
	Ditto	Ditto	Finer in the face； otherwise yes．	1－6＂	$\begin{gathered} 1,675 \\ \text { cub. ft. } \end{gathered}$	\cdots	\cdots	$\left\lvert\, \begin{array}{c\|} 30,960 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 21^{\prime \prime} \\ 85 \text { cub. feet } \\ \text { stone. } \end{array}\right.$	4，0164	Ditto Ditto	Ditto
	Ditto	Ditto	Yes	1－4＂	$\left\|\begin{array}{l} 1,175 \\ \text { cub. ft. } \end{array}\right\|$	\cdots	\cdots	$\left\|\begin{array}{c} 30,004 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 27^{\prime \prime} \end{array}\right\|$	3，868 ${ }^{1}$	Ditto Ditto	Ditto
$\begin{aligned} & \dot{8} \\ & \text { 邑 } \\ & \end{aligned}$	Ditto	Ditto	Ditto	Ditto	$\left.\begin{gathered} 1,700 \\ \text { cub. ft. } \end{gathered} \right\rvert\,$	\ldots	．．．	$\left\|\begin{array}{c} 30,600 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 2 g^{\prime \prime} \end{array}\right\|$	3，538•3	Ditto Ditto	Ditto
	Ditto	Ditto	Ditto	Ditto	$\left\|\begin{array}{c} 1,432 \\ \text { cub. ft. } \end{array}\right\|$	\cdots	\ldots	$\left\|\begin{array}{c} 7,308 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 2 \mathbf{b}^{\prime \prime} \\ 9^{\prime \prime} \times 44^{\prime \prime} \times 24^{\prime \prime} \end{array}\right\|$	3，605	Ditto Ditto	Ditto
	Ditto	Ditto	Ditto	1－3＂	$\left\lvert\, \begin{gathered} 2,297 \\ \text { cub. ft. } \end{gathered}\right.$	\cdots	．．．	$\left\|\begin{array}{c} 40,128 \\ 12^{\prime \prime} \times 6^{\prime \prime 2} \times 2 q^{\prime \prime} \\ 2,297 \text { cub. feet } \\ \text { Btone. } \end{array}\right\|$	4，796－ 85	Ditto Ditto	Ditto

Measures lowering Centres．		Lowering and Removal of Centies，and Results．								
Any earth or superincum－ bent weight	State of progress of wing and spandril walls at time of lowering centres？	After what interval of time after keying were centres first lowered ？	Detail of lowering Centres．	Ultimate Sinking of each of three Arches．				Did any cracks appear？If so，what were their position and dimensions，and was their direction parallel or perpen－ dicular to curve of arch ？	Did any crush－ ing of bricks take place？and was this owing to inferior material or unequal pressure？	Did any yicld－ ing of abut－ ments take place？
when the centres were struck ？				蓠		辿	$\begin{aligned} & \text { 島 } \\ & \text { B̀ } \end{aligned}$			
None	Wing walls 4 ＇high．	\cdots ．．．	As in the foregoing bridge．	－01＇	－ $00{ }^{\prime}$	－02＇	－01＇	None	No	No．
Ditto	Ditto	$\cdots \quad \cdots$	Ditto	$\cdot 02{ }^{\prime}$	－01＇	－ 025^{\prime}	－017＇	No separations trace－ able in haunches，but slight cracks through parapets found above all the baunches．	No	No．
None	Wing walls built．	12 hours．	Ditto，cleared out in 4 days．	－02＇	－03＇	－04＇	－03	Small cracks percepti－ ble in haunches 2 and 3 feet above the spring－ ing；in the arches ther extend up the face wall broad enough to insert	\qquad No e are very minu and parapets， a trowel．	\qquad enes ；they here they are
No	Ditto	Ditto	As in the preceding	－ 0^{\prime}	－04＇	－ $02{ }^{\prime}$	－02＇	Small cracks in haunches－in joints of masonry at first per－ ceptible－do not appear in face walls and parapets．	No	No．
Ditto	Only a portion of wing walls built．	Immediately	Ditto 3 days	$\cdot \mathbf{n}^{\prime}$	$\cdot 0^{\prime}$	－ 0^{\prime}	$\cdot{ }^{-01}$	As before，but extend to face walls and parapets，where they are broad enough to admit a trowel．	No	No．
Ditto	Part in length of wing walls built to springing of passage arches．	Ditto	Ditto	$\cdot 03^{\prime}$	－02＇	－01＇	－02＇	Ditto	No	No．
Ditto	Ditto	Ditto	Ditto	$\cdot 15^{\prime}$	＇05＇	－ 05^{\prime}	$\cdot 08^{\prime}$	Ditto	No	No．
Ditto	Wing walls built．	Ditto	Ditto 2 days	－03 ${ }^{\prime}$	． $02 \cdot$	－002＇	－023 ${ }^{\prime}$	Minute separations in joints of all the haunches which have occasioned eracks in parapets．	No	No．
Ditto	Ditto	Ditto	Ditto 3 days	－02＇	＇02＇	－025＇	$\cdot 02^{\prime}$	Minute separations，at first visible，but closed with superincumbent weight．	No	No．

Meabures lowering Centres．		Lowering and Removal of Centres，and Regdlts．								
Any earth or superincum－ bent weight on haunches of arches when the centres were struck ？	State of progress of wing and spandril walls at time of lowering centres？	After what interval of time after keying were centres first lowered？	Detail of lowering Centres．	Ultimate Sinking of each of three Arches．				Did any cracks appear ？If so，what were their position and dimensions，and was their direction parallel or perpen－ dicular to curve of arch ？	Did any crush－ ing of bricks take place？and was this owing to inferior material or unequal pressure？	Did any yield－ ing of abut－ ments take place？
				管	¢	辿	灾			
No	Wing walls built．	Immediately	Ditto 3 days	－03＇	－03＇	－ $02{ }^{\prime}$	－026 ${ }^{\prime}$	Minute separations，at flrst visible，but closed with superincumbent weight．	No	No．
Ditto	Ditto to springing of passage arches	Ditto	Ditto				$\mathrm{b}^{\prime \prime}$	Ditto	No	No．
Ditto	Ditto	Ditto	Ditto 6 days	－ 06^{\prime}	$\cdot{ }^{-04}$	$\cdot 04^{\prime}$	$\cdot 04^{\prime}$	Ditto，but not closed	No	No．
Ditto	Ditto $2 \frac{1}{2}$ feet above ditto for a portion of their length．	36 hours	Ditto rapidly		as	rtained		A very slight one across arch at each haunch in joints，wide enough to admit a card．	No	No．
Ditto	Ditto	Ditto	Ditto		asc	rtained le with ule．		A slight crack in one haunch of right arch ； ditto each ditto left ditto ；and through joints 3 feet above the spring．	None	None．
Ditto	Wing walls not built．	24 hours	Ditto	Ditto	Ditto	Ditto	Ditto	One crack just percep－ tible 2 feet above spring at abutment end，extend ing half way across arch．	Ditto	Ditto．
Ditto	Wing walls to 2ł feet above springing of passage arches for a portion of their length．	Ditto	Ditto	Ditto	Ditto	Ditto	Ditto	Slight separations in faces and extrados of arches in each haunch， 2」 to 2 feet from spring．	Ditto	Ditto．
Ditto	Ditto	12 hours	Ditto	Ditto	Ditto	Ditto	Ditto	Hair cracks in all haunches perpendicular to face；maximum depth 1I＇from extrados．	Ditto	Ditto．
Ditto	Wing walls not built．	Ditto	Ditto	Ditto	Ditto	Ditto	Ditto	Ditto，13＂ditto	Ditto	Ditio．
VOL．III．										$\Delta \mathrm{A}$

Conetroction．											Preoattionary prepalatohy to
	Vousboirs radiating from one Cen－ tre，or from several，corre－ sponding to Centres of Curves of Intrados．	Particular care taken in dressing Bricks generally， or not．	Work－ manship equable through－ out，or not．	Mean Thickness of Jointa．	Quantity of Materials in dry state expended，and Dimensions of Bricks．				Total Cubic Feet of Masonry．	Keying performed；in whose presence？Were key bricks fitted into their places as tightly as possible by ordi－ nary means？Any extra－ ordinary means used？and if so，of what descriptiou were they？	How far was earth－ work in rear of abut－ ments completed at time centres were struck，and was this earth rammed and watered？
					㞧		$\begin{aligned} & \text { ra } \\ & \text { ص̈ } \end{aligned}$	Bricks， Number and Dimensions．			
道											
$\begin{aligned} & \text { M1 } \\ & \text { O } \\ & \text { D } \\ & \text { M } \\ & \text { M } \end{aligned}$	From one centre．	No	Yes	5－16＂	$\begin{gathered} 600 \\ \text { cub. ft. } \end{gathered}$	\cdots	\cdots	$\begin{gathered} 14,056 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 27^{\prime \prime} \end{gathered}$	2，008	In presence of Sub－Assistant Civil Engineer Madhoram， As before．	Not stated．
$\begin{aligned} & \dot{\text { 㽞 }} \\ & \text { 品 } \end{aligned}$											
$\begin{aligned} & \text { J } \\ & \stackrel{y}{8} \end{aligned}$											
$\begin{aligned} & \dot{4} \\ & \text { 最 } \\ & \text { 另 } \end{aligned}$											
	From one centre．	．No	Yes	5－16＂	$\begin{gathered} 600 \\ \text { cub. ft. } \end{gathered}$	．．．	．．	$\begin{gathered} 14,050 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 21^{\prime \prime} \end{gathered}$	2，008	As at Barapoor	Not stated．

Construction．											Precautiomart
	Voussoirs radiating from one Cen－	Particular care talen	Work－ manship	Mean	Quantity of Materials in dry state expended，and Dimensions of Bricks．				Total Cubic Feet of Masonty．	Keying performed；in whose presence？Were key bricks fitted into their places as tightly as possible by ordi－ nary means？Any extra－ ordinary means used？and if so，of what deacription were they？	How far was earth－ work in rear of abot－ menta completed at times centres were struck，and wes this earth rammed and watered？
$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \text { 罢 } \\ & \hline \end{aligned}$	sponding to Centres of Curves of Intrados．	Bricks generally， or not．	through－ out，or not．	of Joints．	$\stackrel{\dot{1}}{\dot{H}}$		$\begin{aligned} & \text { reg } \\ & \text { Ö } \end{aligned}$	Bricks， Number and Dimensions．			
$\begin{aligned} & \dot{y} \\ & \text { 弟 } \\ & \text { 㽞 } \end{aligned}$											
男 曾 号 号											
呰											
$\begin{aligned} & \text { 苗 } \\ & \text { E } \\ & \text { D } \\ & \text { R } \end{aligned}$											

which fall into the hands of Members of the Irrigation Departmont, North-Western Provinces, may be filled in hereafter.

Constrdetion．											Precadtionary yreparatory to
－${ }_{\text {¢0，}}$	Voussoirs radiating rom one Cen－	Particular care taken	Work－ manship	Mean	Quantity of Materials in dry state expended，and Dimensions of Bricks．				Total Cubic Feet of Masonry．	Keying performed：in whose presence？Were key bricks flted into their places as tightly as possible by ordi－ nary means？Any extra－ ordinary means used？and if so，of what description were they？	How far was earth－ work in rear of abut－ ments completel at times centres were struck，and was this earth rammed and watered？
	sponding to Centres of Curves of Intrados．	Bricks generally， or not．	through－ out，or not．	of Joints．	号		$\begin{aligned} & \text { ri } \\ & \text { 品 } \end{aligned}$	Bricks， Number and Dimensions．			
	From one centre．	Yes	Finer in face；other－ wise yes．	$1-7^{\prime \prime}$	cub．${ }_{\text {cte }}$ c	\cdots	－\cdot	$\begin{gathered} 10,480 \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 22^{\prime \prime} \end{gathered}$	1，311	In presence of executive engineer and Lieutenant Willoughby．As before．	Not stated．
安	Ditto	No	No	．．．	$\begin{aligned} & 2,700 \\ & \text { cub. ft. } \end{aligned}$	．．．	\ldots	$\begin{gathered} 12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} \\ \text { and } \\ 12^{\prime \prime} \times 6^{\prime \prime} \times 2 \frac{1}{2 \prime}^{\prime \prime} \end{gathered}$	．．．	Lieut．Brownlow and assist．－ overseer．As before．	Up to springing line －well rammed and watered．
E	Ditto	Yes	Ditto	＇．．	\cdots	\cdots	．＇．	$12^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}$	\cdots	Ditto	Ditto
$\dot{0}$	Ditto	Ditto	Ditto	\cdots	\cdots	\cdots	\cdots	$12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$	．．．	Ditto	Ditto
¢	Ditto	Ditto	Finer in Faces．	\cdots	\cdots	．．．	\bullet	$12^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$	\cdots	Lieut．Browalow． Ditto，ditto．	None
岗	－Ditto	Yes	Ditto	\cdots	\cdots	\cdots	\cdots	$13^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$			
¢ ${ }_{\text {g }}$	Ditto	Ditto	Ditto	\cdots	\cdots	\cdots	\cdots	Ditto	\cdots	An at Jao	None．
\＄	E Ditto	Ditto	Ditto	．．．	\cdots	\cdots	\cdots	Ditto	\cdots	Lieut．Brownlow．As before．	None．

Measurea lowering Centres.		Lowering and Rebioval of Centreb, and Rebdlta.								
Any earth or superincumbent weight on haunches of arches when the centres were struck?	State of progress of wing and spandril walle at time of lowering centres?	After what interval of time after keying were centres flrst lowered ?	Detail of lowering Centres.	Ultimate Sinking of each of three Arches.				Did any cracks appear? If so, what were their position and dimensions, and was their direction parallel or perpendicular to curve of arch ?	Did any crushing of bricks take place? and was this owing to inferior material or unequal presoure?	Did any yield ing of abutments take place?
					$\begin{aligned} & \text { 淢 } \\ & \text { } \end{aligned}$					
			.							
No	...	As at Seetapoor	As at Lodeepoor.					-		
No	Down stream wing walls to 8 feet high. No Spandrils.	Immediately	Earthen centres lowered simultaneously and cleared out in 30 hours.	-05'	-06'	$\cdot 0^{\prime}$	053 ${ }^{\prime}$	No	No	No.
									-	
No	As at Sonarec, but only 4 feet high.	Immediately	...	$\cdot{ }^{0} 8^{\prime}$	03'	-06'	056'	No	No	No.
-										
				-						---- -
										B 2

Constriction．											Precautionart preparatort to
家	$\begin{gathered} \text { Voussoirs } \\ \text { radiating } \\ \text { from one Cen } \end{gathered}$	Particular care taken	Work－ manship	Mean			$\begin{aligned} & \mathrm{Ma} \\ & \text { spen } \\ & \text { ons } \end{aligned}$	rials in dry d，and Bricke．	Total	Keying performed；in whose presence？Were key bricks fitted into their places as	How far was earth－ work in rear of abut－
$\begin{gathered} \bar{o} \\ \frac{3}{6} \\ \frac{E}{7} \end{gathered}$	sponding to Centres of Curves of Intrados．	generally， or not．	through－ out，or not．	of Joints．	状		苟	Bricks， Number and Dimensions．	of Mesonry．	nary means？Any extra－ if so means used？and were they ？	struck，and wes this eartb rammed and watered ？
$\begin{aligned} & \dot{由} \\ & \text { 总 } \\ & \text { 坷 } \\ & \end{aligned}$											
总 曾 	One centre	No	Yes	\＄＂	．．	\cdots	\cdots	$13^{\prime \prime} \times 6,53^{\prime \prime} \times 34^{\prime \prime}$	4，315	In presence of Executive Engineer and Assietant Overseer，and as before．	Natural soil up to 21 ft．below apring－ ing line．

APPENDIX J.

APPENDIX J.
each Work constructed on the Ganges Canal.

Name of Work．	2. Distance of the Work from the Myapoor Regulator．				3. Arches．					5. -Mensure－ ment． Content of Masonry．	$6 .$ Materials Expended．			
					$\stackrel{\circ}{\circ}$						Bricks．			
					$\begin{aligned} & \text { 岕 } \\ & \text { 茴 } \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \text { 부 } \\ & \text { 品 } \\ & \text { 鬲 } \end{aligned}$					$12 \times 6 \times 3$	$1 " \text { " " } 12 \times 6 \times 21$		
L3ahadoorabad fall No． 2	$\begin{array}{\|c} \text { Miles. } \\ 6 \end{array}$	Furls. 7	$\begin{array}{\|l} \mathrm{Yds}, \\ 163 \end{array}$	$\begin{array}{\|c} \text { Feet. } \\ \hline \end{array}$	8	Feet． 25	Feet． $5 \cdot 5$	$\begin{gathered} \text { Feet. } \\ 2 \mathbf{r} \end{gathered}$	28	Cabic Feet． 4，24，949	．．．	9，23，500	7，28，900	\cdots
＂lock No． 2 ．．．	6	7	163	2	\cdots	\cdots	\cdots	\cdots	\cdots	83，396	\cdots	7，11，043	\cdots	．．．
$\begin{array}{lll} " & \text { store-room No. } 2 \\ " & \text { fall No. } 3 \end{array}$	\cdots	\cdots	182	\cdots	8	25	$\cdots 5$	\cdots	18	3,857 $4,28,291$	－•	27,596 $14,31,220$	\cdots	\cdots
$\begin{array}{ccc} \\ \text { lock No. } 3 & \ldots \\ \text { Sulempoor inlet ... } & \text {... } \end{array}$	7 8	3 1	182	1	\cdots	\cdots	\cdots	\cdots	\cdots	81,065 $\mathbf{3 5 , 2 5 3}$	\cdots	$2,89,100$ $1,09,413$	27,000 \ldots	\cdots
Puttri，1st clase choki ．．．．．．	9	4	161	．．＇	\cdots	\cdots	\cdots	\cdots	\cdots	14，133	．．．	1，27，608	－••	．．．
Puttri super－passage and works， viz．：－	9	5	210	\cdots	9	25	4	3	300	22，43，591	．．．	94，11，011	－••	3，66，144
No． 4 fall on main canal ；No． 4 lock on navigable canal； superstructure to form super－passage over fall and lock，with entrance Forks． Badshahpoor inlet	11	6	71	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	23，763	\cdots	75，974	．．．	\cdots
Dhanouri，1st class choki Rutmoo works，consisting of	12	6	6	1	\cdots	\cdots	\cdots	\cdots	\cdots	10，190	－	1，01，400	\cdots	\cdots
Roadway bridge Inlet and outlet dams	12	6	73	\cdots	\cdots	\cdots	\ldots	\ldots	\ldots	14，96，463	．．．	1，21，34，613	．．．	8，19，852
Regulating bridge with revet－ ments connected the whole together．	13	7	109	1	\cdots	\cdots	\cdots	\cdots	\ldots	14，96，463	．．．		\ldots	
Peeran Kulleeur bridge ．．．	14	2	133	2	3	55	7－37	3	18	1，45，214	．．．	7，56，800	\cdots	2，85，090
Solani aqueducts works，consiet－ ing of－														
Mahewur bridge	15	7	150	\because	3	55	12		18）					
Aqueduct proper ．．．．．．	18	\ldots	134	2	15	50	8	5	…	1，07，54，218	15，080	8，47，64，338	38，87，809	7，64，150
Roorkee bridge	18	5	169	1	3	55	12	3	18					
Earthen aqueduct with ma－ sonry revetted sides con－ necting the whole of the above works together；above the Mahewur bridge an ogee and catlle ghats with escapes ；below the Roorkee bridge there are similar ogee and cattle ghats，with a re－ vetment protecting the right bank on the whole length of the Roorkee curve． Roorkee workshops	\ldots	\cdots		$\begin{gathered} \mathbf{5 , 7 1 , 3 2 9} \\ \text { not } \\ \text { complete. } \end{gathered}$	－••	31，32，057	．．	40，300						

. \cdot	6. - Materials Expended.						Description of the Work.	Total Cost of the Work.	
Boulders.	BlockKunkur.	Lime.			Soorkee.	Sand or Bujree.			
		Stone.	Kunkur.	Earth.					
Maunds. ...	Cub. Feet.	Cab. Feet. \ldots	Cub. Feet. ...	$\left.\begin{array}{r} \text { Cub. Fect. } \\ 1,023 \\ 42,225 \end{array} \right\rvert\,$	$\left\lvert\, \begin{gathered} \text { Cub. Fect. } \\ 5111 \\ 21,112 \end{gathered}\right.$	Cub. Feet. \ldots	Same as Liburheri Same as Mymoodpoor Same as at Mymoodpoor, except that tail jetties are curved outwards instead of inwards.	$\begin{array}{rrr} \text { RS. } & \text { A. } & \text { P. } \\ 275 & 14 & 2 \\ 18,109 & 14 & 10 \end{array}$	Lieut. Turabull. Mr. F. Read.
	\cdots	\cdots		$1,32,123$				77,523 30	Lieut. Fraser, Mr. Read.
...	\ldots	\ldots	\cdots	$\begin{array}{r} 3,408 \\ 37,643 \end{array}$	$\begin{array}{r} 1,704 \\ 18,822 \end{array}$		Standard plan Same as Toghulpoor. Foundations 151 deep.	$\begin{array}{ccc} 1,184 & 9 & 11 \\ 21,662 & 11 & 3 \end{array}$	Lieut. Turnbull, Lieut. Fraser. Lieut. Turabull, Lieut. Fraser, Mr. Read.
\cdots	\cdots	\cdots	\ldots						
\cdots	\cdots	\cdots	\cdots			...	Same es Liburheri	$\begin{array}{rrr} 235 & 10 & 6 \\ 21,760 & 12 & 3 \end{array}$	Lieut. Turnbull, Lieut. Fraser. Lieut. Fraser, Mr. Read. Mr. F. Read.
\cdots	\ldots	\cdots	...	36,514	18,257	\cdots	Same as Toghulpoor. Foundations 15^{\prime} deep. Same as Mymoodpoor ...		
\cdots	\cdots	\cdots	\ldots	15,191	7,695	...		$\begin{array}{lll} 8,964 & 3 & 3 \end{array}$	
\ldots	\cdots	\cdots	...	1,22,377	61,188	\cdots	Ditto	61,368 11107	Lieut. Fraser, Mr. Read. Mr. Read.
\ldots	\ldots	\ldots	...	43,835	21,918	\ldots	Ditto	21,927 18	
\ldots	\ldots	45,349	22,674	...	These works are situated at the point of departure of the Futtehgurh Branch Canal	$29,770 \quad 14 \quad 3$	$\left\{\begin{array}{l} \text { Lieut. Fraser, } \\ \text { Mr. Read. } \end{array}\right.$
\cdots	\cdots	\cdots	...	4,666	2,333	\ldots	Standard plan	1,328 131	Ditto. Ditto. Ditto,
\ldots	...	\ldots	\ldots	976	488	\cdots	Same as Liburheri This bridge has a segmental arch with a versed sine of 10^{\prime}. Its spandrils are perforated to secure lightness. Foundations $10 \cdot 25^{\prime}$ deep.	$\begin{array}{r}1,354 \\ 16,366 \\ \hline 12\end{array}$	
\ldots	30,398	15,199	\cdots			
...	\cdots	\cdots	\ldots	976	488	\cdots	Same as at Liburheri	264135	Ditto.
\cdots	\ldots	...	\ldots	48,885	24,442	\cdots	Same ns at Dukheri, but with ghats on down stream. Foundations 10^{\prime} deep.	25,843 12 s	Ditto.
\cdots	\cdots	\cdots	\ldots	18,720	9,360	...	Same as at Mymoodpoor ...	10,827 002	Mr. F. Read.
\ldots	\ldots	\ldots	\cdots	5,182 47×178	2,591	\ldots	Ditto ... $\begin{gathered}\text { D } \\ \text { Ditto }\end{gathered}$	$\left.\begin{array}{rrr} 2,749 & 15 & 4 \\ 18,153 & 11 & 8 \end{array} \right\rvert\,$	Ditto. Ditto.
...	\ldots	...	\ldots	47,178	23,589				
\cdots	\cdots 1	1,05,664	52,832	...	$\begin{array}{llll}\text { Ditto } . . . & . . & . . & . . \\ \text { Ditto ... } & . . . & \ldots & \ldots\end{array}$	55,192 $13 \quad 5$	Lieut. Fraser, Mr. Read.
\ldots	\cdots	\cdots	\ldots	976	488		Ditto ... Same as at Liburheri	276126	Ditto. Ditto.
...	\ldots		...	29,868	14,933	\cdots	Same as at Liburheri Same as at Dukheri. Foundations, 10^{\prime} d.	16,527 20	
\cdots	\ldots	...	\cdots	53,180	26,690	...'	Similar to M flour bridge, except that it nas longer ghats, and passages through the abutments for the towing-path. Foundations, 12^{\prime}.	27,529 610	Ditto.
\ldots	\cdots	\cdots	\cdots	19,283	9,641	\cdots	Situated on the right bank of the canal, and forms the head of an escape channel which empties itself into the river Hindun.	11,778 29	Ditto.
....	\ldots	\cdots	\cdots	976 41,098	$\begin{array}{r}488 \\ \hline 20.519\end{array}$	\ldots	Same as at Liburheri Same as at Dukheri. Foundations,	$\begin{array}{rrr}241 & 5 & 8 \\ 20,889 & 7 & 0\end{array}$	Ditto. Ditto.
...	...	\ldots	\ldots	41,038	20,619	.			
\cdots	15,219	6,246	\ldots	11 ' $^{\prime}$. Same as Mymoodpoor	$\begin{array}{ccc} 9,349 & 9 & 1 \\ 1,189 & 14 & 8 \end{array}$	Mr. F. Read. Lieut. Fraser, Mr. Read.
\cdots	\ldots	4,201	2,100	..	Standard plan		

		. Materials Expended.					Description of the Work.	Total Cost of the Work.	$\begin{gathered} 9 . \\ \text { Name of the } \\ \text { Executive } \\ \text { Engineer or O円Hcer } \\ \text { under whom } \\ \text { built. } \end{gathered}$
Boulders.	Block Kunkur.	Lime.			Soorlsee.				
		Stone.	Kunkur.	Earth.					
Maunds. ...	Cab. Feet. \ldots	Cub. Feet. .	Cub. Feet. \ldots	Cub. Feet. 38,744	$\begin{gathered} \text { Cub. Feet. } \\ 19,372 \end{gathered}$	Cub. Fect. \ldots	Same as at Mymoodpoor... ...	$\begin{array}{cc} \text { HS. } & \text { A. } \\ 13,443 & \text { P. } \\ \hline \end{array}$	Mr. F. Read.
\ldots	\ldots	\cdots	\cdots	1,08,456	54,228	\ldots	Ditto, but water way contracted to 150^{\prime}.	57,885 00	Lieut. Fraser, Mr. Read.
...	\ldots	18,918	9,459	\ldots	Similar to that at Kutowli, but without covered way.	10,487 117	Mr. F. Read.
				920	460	\ldots	Same as at Liburheri	281711	Ditto.
...	24,714	12,357	...	Same as Dukheri. Foundations, $7{ }^{1^{\prime}}$.	16,711 131	Ditto.
\cdots	\cdots	\cdots	...	55,006	27,503	...	Similar to Khutowli bridge. Foundations, 6琞 ${ }^{\circ}$.	31,571120	Lieut. Fraser, Mr. Read.
	\cdots	\ldots	\cdots	4,200	2,100	\cdots	Standard plan	1,176 1110	Ditto.
.	...	\ldots	...	976	488	...	Ditto $\quad \cdots \quad \cdots$. \quad.	1,74 274	Ditto.
.	41,080	20,540	...	Here the width of bridges is reduced to 150^{\prime} in three bays of	20,229 145	Ditto.
							50^{\prime} each. The arch is a segment, with 7^{\prime} versed sine. The spandrils have a circular hole perforated through them. Ghats are provided on each flank. Foundations, ${ }^{\prime}$ '.		
	...	\ldots	...	976	488	\cdots	Standard plan	275211	Ditto.
.	24,436	12,213	...	Same as at Nanoon, but without ghats. Foundations 13 feet.	11,954 68	Ditto.
		\cdots	\cdots	1,132	566	\cdots	Standard plan \ldots	$\begin{array}{lll}322 & 0 & 7\end{array}$	Mr. F. Read.
...	\ldots	28,473	14,236	...	Same as Jutpoorah. Foundations 15.75'.	14,926 5	Ditto.
\ldots	\cdots	21,273	9,264	\cdots	Same as at Mymoodpoor, except that this head has a ghat 146 ft . long attached to it.	$\begin{array}{llll}11,956 & 6 & 4\end{array}$	Ditto.
...	..	\cdots	\cdots	4,201	2,100	...	Standard plan	1,266 $12 \quad 2$	Lieut. Frnser and Mr. Read.
...	...	\cdots	\ldots	49,148	24,574	...	Same as at Sullawur	24,174 $13 \quad 2$	Mr. F. Read.
...	...	\cdots	...	110,368	55,184	..	Ditto	65,520 6 6 89	Lieut. Fraser and Mr. Read.
\cdots	\cdots	\cdots	...	23,156	11,578	...	Same as the Aboos Nulla ...	$\begin{array}{llll}19,204 & 3 & 7\end{array}$	Mr. Read.
\ldots	\cdots	\cdots	...	1,011	505 13,010	...	Standard plan	$\begin{array}{r}51213 \\ 14231 \\ \hline 13\end{array}$	Ditto.
\ldots	\cdots	\cdots	\cdots	26,020	13,010	...	Same as Jutpoora. Foundations $11 \cdot 25$ feet.	14,231 37	Ditto.
\cdots	\ldots	...	1,656	\ldots	...	\ldots	Standard plan	5131	Ditto.
...	\cdots	\cdots	38,508	Same as Jutpoora. Foundations $10 \cdot 75$ feet.	14,434 75	Ditto.
\ldots	7,056	Standard plan	$1,417{ }^{2} 8$	Ditto.
\cdots	\cdots	...	35,544	\ldots	\cdots	\cdots	Same as Jutpoora. Foundations $10 \cdot 75$ feet.	14,528 106	Ditto.
\ldots	\ldots	...	1,600	\cdots	Standard plan	371141	Ditto.
\ldots	\ldots	...	35,607	Same as Jutpoora. Foundations 10 feet.	12,297 411	Ditto.
...	\ldots	...	1,564	\cdots	\cdots	\cdots,	Standard plan	959211	Ditto.
\cdots	\ldots	\cdots	35,521 '	Same as Jutpoora. Foundations 11 feet.	12,749 61	Ditto.
...	...	\ldots	1,564	\cdots	...	\cdots	Standard plan ... $\quad . .6$	$\begin{array}{llll}376 & 4 & 8\end{array}$	Ditto.
\cdots	\cdots	...	72,017	.	.*	...	Same as Jutpoora, but with ghats 160 feet long and similar to the	22,571 3	Ditto.
							Sirdhanne ones. Foundations 10 feet.		
\cdots	\ldots	...	1,586	\cdots	\cdots		Standard plan	501110	Ditto.
...	91,388	Same as at Jutpoora, Foundations 11 feet.	19,604 1114	Mr. F. Read.
...	22,690	\cdots	Same as Sullawar	9,955 11 6	Ditto.
\cdots	6,301	\cdots	\cdots	\cdots	Standard plan an	1,544 10 3	Ditto.
...	56,783	Same as Sullawar	14,190 112	Ditto.
...	\cdots	\cdots	152,443	Ditto	54,639 128	Ditto.

Name of Work．	2. Distance of the Work from the Myapoor Regulator．				$3 .$ Arches．				4. 	5. Measure－ ment． Content of Masonry．	$6 .$ Materials Expended．			
					4		¢				Bricks．			
					$\begin{aligned} & \text { 宮 } \\ & \text { 則 } \\ & \text { 学 } \end{aligned}$	$\begin{gathered} \text { 4. } \\ \text { 号 } \\ \text { م } \end{gathered}$					$12 \times 6 \times 3$	$\left\|\begin{array}{ccc} 11 & " 1 \\ 12 \times 6 \times 28 \end{array}\right\|$	$12 \times 6 \times 2$	
Pepulheera bridge and ghats ．．．	Miles． 106	$\begin{gathered} \text { Furls. } \\ 6 \end{gathered}$	$\begin{gathered} \text { Yds. } \\ 84 \end{gathered}$	$\begin{gathered} \text { Feet. } \\ \mathbf{2} \end{gathered}$	3	$\begin{gathered} \text { Feet. } \\ \mathbf{4 5} \end{gathered}$	$\begin{gathered} \text { Feet. } \\ 6 \end{gathered}$	Feet． 2	20	Cable Feet． 129，472	$971,040$$633,795$			
Raoli bridge ．．．．．．．．．	108	5	84	\cdots	3	45	6	2%	18	84，506				
Bolundshahur branch head works ： Branch regulating bridge．．． Main canal	110 110	2	96 193	\cdots	3^{3+}	20	6	12	18	\} 102,817	$282,204$	\cdots	．．．	\cdots
Duhera，lat class choki ．．．	110	3	\cdots	12，518	$\begin{aligned} & 1,00,000 \\ & 1,91,110 \end{aligned}$		\ldots	\cdots						
Nidhaoli bridge ．．．．．．．．．	113	6	．．．	．．．	3	45	6	$2 \frac{1}{2}$	18	75，093				
Nidhaoli，2nd class choki ．．．	113	5	186	2	\cdots	\cdots	\cdots	\cdots	\cdots	2，659	23，800	\cdots	\cdots	\cdots
Jarcha，2nd class choki ．．．	116	4 5	163	\ldots		$\ddot{45}$	\cdots		18	2,659 $\mathbf{7 2 , 1 3 7}$	22,800 $\mathbf{2 , 5 0 , 1 1 1}$	\ldots	\ldots	\ldots
＂bridge ．．．．．．．．．	116	5	6	．．．	3	45	6	23	18	72，137	2，50，111	．．．	．．．	．．．
Geesoopoor，Ist class choli ．．．	119	5	96	2	\cdots	\cdots	\cdots	\cdots	\cdots	14，222 ${ }^{\frac{1}{2}}$	1，05，460	＂．	\cdots	\ldots
Geesoopoor bridge ．．．．．．	119	6	110	\cdots	3	45	6	$2 \frac{1}{2}$	18	74，390	2，19，122	\cdots	\cdots	\cdots
Sunowla，2nd class choki	122	4	153	1	．	\cdots	\because	\cdots	\cdots	2，737	22，800	．．．	＊＊＊	\cdots
＂，bridge ．．．．．．	122	5	44	1	3	45	6	$2 \frac{1}{2}$	18	79，894	1，99，620	．．．	．．．	．．．
Pukkane，2nd class choki ．．．	125	4	153	1						2,503 78,211	22,800 $1,23,900$	\ldots	\ldots	\ldots
＂，bridge ．．．．．．	125	5	35	1	3	45	6	212	18	78，211	1，23，900	．．．	．．．	．．．
Dumkoura let clase choki	128	4	120	\cdots	－	\cdots	\cdots	\cdots	\％ 1	9,502 64018	$\begin{array}{r} 80,000 \\ 1.41350 \end{array}$	．．．	\ldots	\ldots
＂，bridge ．．．．．．	128	4	150	\cdots	3	45	6	21	18	64，018	$1,41,350$	．．．	．．．	．．．
Urrowli 2nd clase choki	131	1	113	1						2,893 $1,03,226$	27,800 $1,99,722$	．．．	\ldots	\cdots
＂bridge ．．．．．．．．．	131	2	14	\cdots	3	45	6	21	25	1，03，226	1，99，722	．．．	．．．	．．＇
Wallipoora bridge ．．．．．．	133	6	108	1	3	45	6	21	25	1，40，066	2，10，977	\cdots	\ldots	\cdots
Wallipoora 2nd class choki ．．．	133	6	208	1	\cdots	\cdots	．．．	．．	\cdots	2，737	24,800 21,800	．．．	\ldots	\ldots
Msmun 2nd class choki ．．．	137	\cdots	100			45			18	2,560 $\mathbf{7 8 , 3 7 5}$	21,800 $1,45,414$	．．．	．	\ldots
＂bridge ．．．．．．．．．	137	．．．	213	1	3	45	6	23	18	78，375	1，45，414	－••	＊	．
Uchahja bridge ．．．．．．．．．	139	5	189	1	3	45	6	21	18	68，253	1，39，614	．．．	\cdots	．＇．
Uchuhja 2nd class choki ．．．	139	6	86	－	\cdots	\cdots	．．．	\cdots	\cdots	2，893	24，450	－．．	\cdots	\cdots
Moonds Khers 1st clast choki．．．	140	\cdots	83	1	\cdots	\cdots	\cdots	\cdots	＊＊	13，881 $\frac{1}{2}$	1，00，000	．．．	．．．	．．．
Moonda Khera escape ．．． connected by ghats with Moonde Khera bridge ．．．	［140	｜$\quad .$.	\cdots	2	10 3	6 $4 \cdot 5$	12 6	b 1	$\cdots{ }^{\cdots}$ 18	1，76，691	2，28，184	\cdots	．．．	\cdots
Sabinds bridge ．．．．．．．．．	． 144	5	6	．．．	3	45	6	21	18	80，147	1，13，968	．．．	－${ }^{\text {a }}$	．．．
Sahinde 2nd class choki ．．．	144	5	106	1	．．．	\cdots	\ldots	\cdots	\cdots	2，560	21，800	．${ }^{\text {c }}$	\cdots	\cdots
Pulra natigable channel，head， and right rajbabs．	， 148	．．．	1.33	\cdots	．．．	．．．	．．．	．．．	．${ }^{\text {a }}$	30，653	36，477	．．．	＊＊	．

－ 2 of $15^{\prime}, 1$ of 20^{\prime} ．

Name of Work.	2. Distance of the Work from the Myapoor Regulator.				3. Arches.				4. 	5. Measure- ment. Content of Masoary.	6.Materials Expended.			
											Bricke.			
						$\left.\begin{gathered} \text { dio } \\ \text { a } \\ \text { a } \\ n \end{gathered} \right\rvert\,$					$\left\|\begin{array}{lll} \prime \prime \\ 12 \times 6 \times 3 \end{array}\right\|$	"12 $\times 1{ }^{\prime \prime} \times 2{ }^{\prime \prime}$	$12 \times 6 \times 2$	
Jao bridge	$\begin{array}{\|c} \text { Miles. } \\ 10 \end{array}$	$\left\|\begin{array}{c} \text { Furls. } \\ 5 \end{array}\right\|$	$\begin{gathered} \text { Yds. } \\ 17 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Feet. } \\ 1 \end{gathered}\right.$	3	$\begin{aligned} & \text { Feet. } \\ & \mathbf{3 0} \end{aligned}$	$\begin{gathered} \text { Feot. } \\ 4 \end{gathered}$	$\begin{aligned} & \text { Feet. } \\ & 24 \end{aligned}$	18	Cublc Feet. 68,601	85,119	\ldots	\cdots	...
Lodipoor 2nd class choki	\cdots	\cdots	\cdots	\cdots	...	\ldots	\ldots	\cdots	\ldots	2,778	14,600
, bridge	13	1	153		3	30	4	2.4	18	59,687•49	92,728	\ldots	...	\ldots
Kutai 2nd class choki	15	2	187	1	\ldots	...	3,643	2,000
, bridge	15	3	110	1	3	30	4	24	18	64,812 $\cdot 12$	86,791
Seetapoor 2nd class choki bridge	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	7 \cdots	158 92	..	3	30	\ldots	$\underline{21}$	18	3,284 59,687	14,600 85,666	...	\cdots	\ldots
Pilkutra lat class choki	20		161	1						14.988	63,350	\ldots	...	\ldots
" bridge	20	6	44	\cdots	3	30	4	24	18	61,110 5	89,528
Noli 2nd class choki ...	23	2	31	2			\ldots			3,580	15,5(0)
, bridge	23	2	219	\cdots	,	30	4	24	18	68,350.9	94,287	\ldots
Oreyree 2nd class choki	25	5	135	\cdots	\cdots	\ldots	\cdots			3,350 66758	15,500 $1,02,143$	\ldots	\cdots	...
Gür bridge	25	6	10	2	3	30	4	24	18 18	66.758 $39,693 \cdot 8$	$1,02,143$ $\mathbf{3 7 , 6 0 0}$	\cdots	\cdots	80,0i0
Guhruna bridge	28	2	89	...	3	30	4	$2 \ddagger$	18	39,693-8	37,600	80,000
Sonari 2nd class choki ...	31	1	180	\ldots	\cdots	...	\cdots	\ldots	\cdots	3,805	1,600	\ldots
, bridge	31	2	57	...	3	26		24	18	63,391 $\cdot 1$	82,785	\cdots	...	\cdots
Soraoon 1at class choki	33	3	40	...						16,285	72,000	\ldots	...	\ldots
Ku't bridge	33		161	\ldots	3	26	31	24	18	63,907•4	98,654 16,000	\ldots	\cdots	...
Kutana 2 nd class choki	35	6	48	2	\cdots	\cdots	3.5		\ldots	3,327 $63,907 \cdot 4$	16,000 $1,02,204$	\cdots	\ldots	\ldots
bridge Jeyra 2nd class choki ... ar	35 39	6	134	\ldots	3	26	3.5	$2 \ddagger$	18	$63,907 \cdot 4$ 3,490	$\begin{array}{r}1,02,204 \\ 16,200 \\ \hline\end{array}$...	\cdots	...
Jeyr bridge \ldots... \ldots...	39 39	1	120	\cdots	3	26	3id	$\dddot{2 i}$	18	64,501-5	70,850	\ldots
Peydhut 2nd class choki	41		11	...		\cdots	\ldots	-	\cdots	3,290 5	13,200	...	\ldots	\cdots
", bridge	41	\ldots	90	2	3	26	4	2	18	65,325•8	81,300	...	\ldots	...
Kanakowa 2nd class choki	43	1	93	1						3,290	13,200	\ldots	...	\ldots
, bridge \cdots...	43	1	166	2	3	26	\ldots	2	18	61,354•5	68,560
Puteeika lst class choki	46	3	93	1	16,620	65,000
, bridge	46	3	216	2	3	26	4	2	18	62,074.9	88,000
Burragaon 2nd class choki	49	3	126	2			4	\cdots		3,290 5	13,200	\ldots	\ldots	\cdots
$\cdots \quad \because \quad$ bridge \ldots	49	4	11	2	3	26	4	2	18	59,167.4	1,00,000	\ldots	\ldots	...
Koosiarri 2nd class choki	52	3	36	2	3,171•5	13,200
" bridge	52	3	136	2	3	26	4	2	18	58,767•5	2,00,000
Futtehkhan's 2nd class choki ...	54	7	40							3,171-5	13,200	...	\ldots	\cdots
" bridge	54	7	140	1	3	26	4	2	18	56,954•5	$1,38,000$ 60,000	\cdots	\ldots	\ldots
Giliror 1st class choki	57	4	${ }_{1}^{61}$	1				\cdots	25	$\begin{array}{r} 15,298 \\ 1,3+699 \end{array}$	$1,60,000$ $1,80,000$	\ldots	\ldots	\ldots
,, bridge, with connected escape, and extra bridge over escape channel.	57	4	158		2	33	4	2	25	1,34,699	1,80,000	\cdots	...	!
Catipoor 'Teemifal Line.														
$\begin{array}{ccc} \text { Keylunpoor } & \begin{array}{c} \text { 2nd clness choki } \\ \text { bridge } \end{array} & \ldots \\ \ldots & \ldots \\ \hline \end{array}$	2	5	165 34	2	$\stackrel{3}{3}$	33	$\dddot{4 t}$	24	20	3,517 81,543	$\begin{array}{r} 6,927 \\ 3,17,112 \end{array}$	$\begin{aligned} & 28,200 \\ & 69,655 \end{aligned}$	\cdots	\cdots
Rualain 2nd clasa choki	6	2		2						3,820	1,800	40,812
, bridge	6	2	160	\cdots	3	33	4	24	18	61,391	3,88,417	

		Mat	$6 .$ rials Expe	ended.			Description of the Work.	8.	$9 .$ Name of the
Boulders.	Block Kunkur.	Lime.			Soorkee.	Sand		Total Cost of the Work.	Name of the Executive Engineer or Officer under whom built.
		Stone.	Kunkur.	Earth.		Bujree.			
Mands. ...	Cub. Feet. 56,406	$\begin{gathered} \text { Cub. Feat. } \\ 218 \end{gathered}$	$\begin{aligned} & \text { Cub. Feet. } \\ & 14,163 \end{aligned}$	Cab. Feet ...	Cab. Feet.	Cab. Feet.	Same as Chitrowli, but waterway reduced to 90°.	$\begin{array}{ccc} \text { R\&. } & \text { A. } & \text { P. } \\ 10,889 & 8 & 1 \end{array}$	Lieut. Whiting.
*-	1,045	...	438	\cdots		\cdots	Same as Chitrowli; arches faced with block kunkur.	3651101	Ditto.
\cdots	48,113	$\begin{aligned} & 234 \\ & \ldots . \end{aligned}$	$\begin{array}{r} 13,187 \\ 430 \end{array}$	\cdots	\cdots	\cdots	Ditto ... Ditto, but built entirely of block kunkur, except arches.	$\begin{array}{rrr}8,876 & 2 & 7 \\ 672 & 8 & 0\end{array}$	Ditto. Ditto.
	3,643								
\cdots	53,286	227	11,857	\cdots	\cdots	\cdots	Same as Chitrowli; arches faced with kunkur.	9,698 710	Ditto.
\cdots	1,552	\cdots	330	120		$43212 \quad 42$	Ditto. Ditto.
-•	48,938	226	13,254	...	\cdots	810	Ditto, arches faced with bluck kunkur.	9,679 2 I	
\cdots	72,50.5	14	1,900	\cdots	\cdots	\cdots	Same as Jao	1,953 8 10	Ditto.
.	49,840	243	13,082	943	Same as Chitrowli	9,489 14.3	Ditto.
...	1.700	\cdots	385	\cdots	Ditto	44208	Ditto.
...	56,568	120	12,916	410	Ditto	9,094 70	Ditto.
...	1.500	\cdots	380	Ditto	41522	Ditto.
...	53,980	145	14,504	...		\cdots	Ditto \ldots.. $\quad . \quad \ldots \quad . .$.	8,936 1011	Ditto.
\ldots	30,105	32	8,127	\ldots	-		Ditto, but has no ghate, rajbuha heads, \&cc.	5,341 $15 \quad 0$	Ditto.
\cdots	3,000	. ${ }^{\text {a }}$	430	\cdots	\cdots	-	Block kunkur used throughout except in arches.	580111	Capt. Whiting.
\cdots	52,894	111	13,082	\cdots	\cdots	537	At this bridge the waterway is reduced to 78 feet, and the rajbuha heads are only 6 feet wide, with flooring 16 inches above bed.	0,521 I 7	Ditto,
\ldots	7,777	45	2,160	\cdots	...	140	above bed. Same as at Jao	2,224 67	Ditto.
...	51,326	135	11,622	438	Arclies faced with kunkur ...	8,353 004	Ditto.
\cdots	1,443	${ }^{3}$	270	106	Same as Chitrowli	8,353 0048	Ditto.
\ldots	50,680	126	12,000	\cdots	\cdots	1,080	Same as Sonari bridge Same as Chitrowli	8,442 130	Ditto.
\cdots	1,55.4	$2{ }^{2}$	280	...		112		$413 \quad 410$	Ditto.
\cdots	55,940	93	12,006	\ldots	\cdots	550	Same as Chitrowli Same as Sonari bridge	8,494 149	Ditto.
\cdots	1,593	\cdots	561	\ldots		60	Same as Sonari bridge Same as Chitrowli	4531211	Ditto. Ditto.
...	55,164	72	15,170	-	49.	225	Same as Sonari, but ghats are 100 feet long.	9,073 114	
...	1,593	\cdots	300	...	\ldots	115	Same as Chitrowli	$415 \quad 271$	Ditto.
...	52,789	63	16,490	...	39	750	Same as Sonari	$8,570 \quad 10{ }^{8}$	Ditto.Ditto.
...	8,600	θ	8,043	- ${ }^{\prime}$...	1,447	Same ns at Jao, but pukka throughout.	2,544 14 0	
...	51,067	38	18,150	. ${ }^{\prime}$..'	...	Same as Sonari, but ghats are 75 feet long.	$8,661 \quad 2 \quad 9$	Ditto.
\cdots	1,593	- 28	562	\cdots	\ldots	$\ldots 7$	Same at Chitrowli	$453 \quad 10 \quad 8$	Ditto.
\cdots	16,710 1,474		14,290639	...			Same as Sonari Same as Chitrowli, but pukka throughout.	$\begin{array}{rrrr}8,055 & 6 & 0 \\ 472 & 2 & 11\end{array}$	
...	1,474	\cdots	288			Ditto.
\cdots	33,180	14	14,905 ${ }^{\text {a }}$	\cdots	Same as Sonari, except that cannl embankment retaining wall is dispensed with.	8,869 $12 \quad 6$	Ditto.
\ldots	1,474	\cdots	${ }_{14} 236$...	\ldots	200	$\begin{array}{lll}\text { Same as Chitrowli } & \text {... } & \text {.. } \\ \text { Same as Koosiarri } & \text {.. }\end{array}$	$\begin{array}{rrrr}410 & 13 & 5 \\ 8,392 & 15 & 0 \\ 2,377 & 13 & 10 \\ 18,009 & 4 & 3\end{array}$	Ditto. Ditto. Ditto. Ditto.
\cdots	39,697	60	14,122	...		-			
\cdots	7,725	17	2,398	868	Same as Jao The design of these works is simi-		
...	1,12,337	85	34,248			
...		\ldots	73 25,668	\cdots	531	4,310	Standard plan Has ghats 60 feet long, road retaining revetmenta, inlet heads, and rajbuha heads 10 feet wide. Also a drop in floor of 2 feet.	$\begin{array}{rrr} 382 & 3 & 9 \\ 11,742 & 11 & 7 \end{array}$	Lieut. Hodgson. Ditto.
**	29,787	. \cdot	25,668				
\cdots	\cdots		86	...	$\begin{array}{r} 171 \\ 1,620 \end{array}$	7,398	Standard plan Sanue as nt Keylunpoor, but without drop in floor.	$\begin{array}{r} 39912 \\ 10,19214 \\ 10 \end{array}$	Ditto. Ditto.
\ldots	..	22,249					

Materials Exp							Description of the Work.	Total Cost of the Work.	$\begin{gathered} 9 . \\ \text { Name of the } \\ \text { Executive } \\ \text { Engineer or Officer } \\ \text { under whom } \\ \text { built. } \end{gathered}$
Boulders.	Block Kunkur.	Lime.			Soorkee.	Sand or Bujree.			
		Stone.	Kunkur.	Earth.					
Maunds. ${ }^{\text { }}$	$\begin{gathered} \text { Cub. Feet. } \\ \left\lvert\, \begin{array}{l} 2,270 \end{array}\right. \end{gathered}$	Cab. Feet.	Cub. Feet.	Cub, Feet.	Cub. Feet.	$\left\|\begin{array}{c} \text { Cub. Feet. } \\ 1,136 \end{array}\right\|$	Is not connected with bridge .	$\begin{array}{ccc}\text { ns. } & \text { A. } & \text { P. } \\ \text { 2,213 } & 5 & 9\end{array}$	Lieut. Hodgson.
...		...	5,800						
...	9,853		122		58		Standard plan	40412 0 0	Ditto.
\ldots		\ldots	$\begin{aligned} & 24,073 \\ & 18,117 \end{aligned}$	\cdots	$\frac{501 \frac{1}{2}}{1,226}$	$\begin{aligned} & 4,951 \\ & 3,157 \end{aligned}$	Same as Rudain ... Same as Rudain, but has no rajbuhas attached, and glats are on down-stream.	10,071 8,190 1598	Ditto.
-								8,190 $15 \quad 7$	
\ldots		\ldots		\cdots			Standard plan	1,250 121	Ditto.
\ldots	11,064	\ldots	24,449	...	2,665	5,282	Same as Rudain	$10.65913 \quad 5$	Ditto.
\ldots		\ldots	131	\ldots	$78{ }^{3}$	5,33	Standard plan ...	$\begin{array}{llll}310 & 4 & 8 \\ 930 & 7 & \end{array}$	Ditto.
\ldots	23,352		18,631		2,084	5,339	Same as Rudain		Ditto.
\ldots	38,276		136 20,278	\ldots	48 3,179	5,726	Standard plan Same as Rudain ... a	455 3 6 9.627 0 9	Ditto.
\ldots	-264	\ldots	1,762		${ }^{6} 61$	57.	$\begin{array}{ll}\text { Saine as rudain } & \ldots \\ \text { Standard plan } & \ldots \\ \text {... }\end{array}$	2,0061411	Ditto.
...	52,291	...	26,107199	\ldots	30	5,932	Same as Rudain, except in reduc:tion of waterway.	$\begin{array}{llll}10,935 & 1 & 5\end{array}$	Ditto.
	1,200	\ldots			${ }^{236}$	165,190	Standard plan	$\begin{array}{llll}402 & 2 & 2\end{array}$	${ }_{\text {Ditto. }}^{\text {Ditto }}$
...	32,492		199 16,826	\ldots					
\cdots	17,224	\ldots		\cdots	1,102	5,196 5,534	Standard plan Same as Rudain \ldots \ldots \ldots \ldots \ldots		Ditto, Ditto.
\cdots		\ldots		\ldots		$\begin{array}{r} 5,534 \\ 326 \end{array}$		393 14 8 9,854 6 1	Ditto.
\cdots	$\begin{array}{r} 6,000 \\ 20,852 \end{array}$		$\begin{array}{r} 15,779 \\ 1,434 \end{array}$	\cdots	628		Same as Rudain, with exception to rajbuha openings, which are reduced to 6 feet.	$\begin{array}{rrr} 1.884 & 12 & 2 \\ 8,946 & 4 & 7 \end{array}$	Ditto.
\ldots			-14,140			5,296			
\ldots		\ldots	328		\ldots	39°	Standard plan	403130	Ditto.
\ldots	28,516	\cdots	13,392	\ldots	\ldots	5,354	Same as Gopalpoor	$8,551 \quad 5 \quad 6$	Ditto.
\cdots	22,477	\ldots	159			${ }^{25}$	Standard plan ... ${ }^{\text {a }}$ S	351711	Ditto.
\ldots	22,477	\ldots	15,763 72	\ldots	1,546 108	7.417 64	Same as Gopalpoor Standard plan and	10,007 349 $\mathbf{9}$ 0 $\quad \mathbf{1}$	Ditto.
\ldots	41,897	\ldots	17,820	\ldots	...	8,386	Same as Gopalpoor \ldots...	9,402 $15 \begin{aligned} & \text { 7 }\end{aligned}$	Ditto.
...	22,797	\ldots	$\begin{array}{r}17,855 \\ \hline 17,105\end{array}$	\ldots	$\begin{aligned} & 203 \\ & 190 \end{aligned}$	996,529	Standard plan ...	$1.506 \quad 210$	Ditto.
\cdots								$\begin{array}{llll}9.902 & 1 & 3.1\end{array}$	
\ldots		\cdots	-i>2	\cdots	\ldots	...		$\begin{array}{rrrr}3,340 & 5 & 11 \\ 347 & 1 & 3\end{array}$	Ditto.
\cdots	28,534	\ldots	16,431	\ldots	\cdots	8,138	Standard plan Same as Gopalpoor	$\begin{array}{r}3947 \\ 8,950 \\ \hline 68\end{array}$	Ditto.Ditto.
\ldots	$\ldots 8.046$	\ldots	221918,538	\ldots	50	56 11.562	Stane as lopal poor Standard plan ar	331141	
\ldots				\cdots		11.56216	Same as GopalpoorStandard plana	$\begin{array}{rrrr}8.865 & 3 & 9 \\ 390 & 5 & 3\end{array}$	Ditto. Ditto.
\cdots	$\underset{18,436}{ }$								Ditto.
...		\cdots	18,449	...		5,409	Same as Gopalpoor, but no retaining revetments to bank.	8,69946	Ditto.
\ldots	$\begin{array}{r} 6,912 \\ 48,815 \end{array}$	\cdots	$\begin{array}{r} 2,382 \\ 20,301 \end{array}$	\ldots	\cdots	$\begin{array}{r} 3.36 \\ 10,606 \end{array}$	Standard plan Similar to Gopalpoor, but ghats 80 feet long, and no rajbuba heads.	$\begin{array}{ccc} 2,133 & 13 & 11 \\ 12,419 & 1 & 4 \end{array}$	Ditto. Ditto.
\cdots									
\ldots	40,478	...	348	\ldots	\ldots	11,787	Standard plan \ldots Same as Gopalpoor \ldots \ldots	$\begin{array}{rrr}393 & 15 & 1 \\ 9,635 & 1 & 2\end{array}$	Ditto.Ditto.
\ldots		\cdots	20,871	\ldots	$\cdots 6$	11,787			
\ldots	37,171		3324			82	Standard plan ... ${ }^{\text {Same as Gopalpoor }}$...	37374	Ditto.
\ldots		\ldots		...	68	$\begin{array}{r} 9,992 \\ 50 \end{array}$		$\begin{array}{llll}9,895 & 7 & 4\end{array}$	Ditto.
\cdots	24,390	\ldots	$\begin{array}{r} 262 \\ 20,772 \end{array}$	\ldots	17	12,706	Same as Gopalpoor, hut two bays instead of three.	$8,625 \quad 0 \quad 6$	Ditto.
\ldots	4,547	\ldots	1,679	\ldots		472	Standard plan	1,857 13.3	Ditto.
\ldots	34,812 1,326	...	17,049 180	\ldots	1,908	10,260	Same as Puttuhar	9,403 14.4	Ditto.
\ldots	1,326 30,849	\ldots		\ldots	2,024	62	Standard plan ... ${ }^{\text {a }}$... ${ }^{\text {a }}$	4351511	Ditto.
\cdots	30,849	\ldots	15,596	...	2,024	10,464	Same as Puttuhar, but with reduced waterway.	8,649 29	Ditto.
\cdots	1,372 28,926	\cdots	244	\ldots	10	106	Standard plan ...	407134	Ditto.
\cdots	28,926	\ldots	13,100	\ldots	1,260	9,040	Sume as Sogaon	7,095 9	Ditto.
	16,196	...	13,15 13,652	\ldots	1,690	44 8,296	Standard plan \ldots .. Sanie as Sogaon \ldots \ldots	$\begin{array}{rrr}396 & 0 & 4 \\ 7.617 & 1 & 1\end{array}$	Ditto.
...	4,313	...	264	\cdots	1,00	${ }^{68}$	Sinndard plan	(Not complete.)	Ditto.
\cdots	20,161	\cdots	15,699	\cdots	\cdots	6,370	Same as Sogaon, but with reduced waterway.	(Not coniplete.)	Ditto.
\cdots	11,970	\cdots	5,503	4,291	Same ar Nuggurees	2,79210	Ditto.
\cdots		\cdots	44	\ldots	\ldots	44	Standard plan	Ditto.
\cdots	23,397	\cdots	13,568	7,915	Same as Dhundos...	Ditto.
...	780	...	66	19	Standard plan	Ditto.

Name of Work．		2. Distance of the Work from the Myapoor Regulator．				$3 .$ Arches．					5. Measure－ ment． Content of Masonry．	Materiala Expended．			
												Bricks．			
						$\begin{aligned} & \text { 岂 } \\ & \text { 最 } \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \text { + } \\ & \text { 品 } \\ & 0 \\ & 0 \end{aligned}$					$\left\|\begin{array}{cc} 11 & \prime \prime \prime \\ 12 \times 6 \times 3 \end{array}\right\|$	$\left\|\begin{array}{ccc} 11 & \prime \prime \prime \\ 12 \times 6 \times 2 \frac{1}{2} \end{array}\right\|$	$\begin{array}{llr} \prime \prime \prime \\ 12 \times 6 \times 2 \end{array}$	$\left\lvert\, \begin{aligned} & 9 \prime \prime \\ & 9 \frac{1}{2} \times 4 \times 3 \\ & \text { Smaller and of } \\ & \text { verious Slves. } \end{aligned}\right.$
		Miles．	Furls．	Yds．	Feet．		Feet．	Feet．	Fee		Cabic Feet．				
Futtihpanr bridge	\ldots	90	3	57	Fet	2	32	4	2t	18	－48，320	1，62，126	\cdots		
Mirzapoor 2nd class choki	\ldots	93	－	205	\ldots	\ldots	\ldots	．．	\cdots	．	2，687	15，394	\ldots	．．．	\ldots
，＂bridge ．．．	．．．	93	1	70	2	2	30	4	2	20	45，001	2，64，717	．．．	．．．	\ldots
Dinguree 1st class choki	．．．	96	4	86	1	\cdots	\cdots	\cdots	\cdots	\cdots	Not begun．		\ldots	\cdots	\cdots
．，bridge ．．．．．．	．．．	96	3	178	2	2	30	4	2	18	49，170	1，17．513	．．．	．．．	31，093
Sureya 2nd class choki．．．	．．．	98	4	32	\cdots	－	30	4	\cdots	20	2，687	15，510	\cdots	．．．	50
Kü bridge ．．．	．．．	98	4	115	1	2	30	4	2	20	44，457	1，32，437	．．．	．．．	3，500
Kunsowa 2nd class choki	．．．	102	2	14	．．．	．．．	．．．	．．．	\cdots	．．．	2，580	22，200	．．．	\cdots	．．．
，bridge ．．．．．．	\ldots	102	2	78	2	2	30	4	2	18	47，255	60，842	\cdots	\ldots	\ldots
Husseyrun 2nd class choki	\ldots	104	5	143	\cdots	\because	\cdots	4	\because	20	2，580	19，388	\cdots	．．．	．．．
brist bridge ．．．	\ldots	104	6	29	1	2	30	4	2	20	66，949	16，210	．．．	．．．	．．．
Bahusi lst class choki ．．．	\cdots	108	5	59	1	\because	\cdots	4	－	\cdots	9，260	76，403	\cdots	．．．	\cdots
Con bridge ．．．．．．		108	5	132	\because	2	30	4	2	18	50，893	19，225	\cdots	\cdots	\cdots
Goonaha 2nd class choki：		111	\cdots	4	2	\％	\cdots	$\stackrel{\square}{4}$	\cdots	18	2,580 63,299	18,975 18,737	\ldots	\ldots	\ldots
Oomurd bridge ．．．		111	\cdots	74	\cdots	2	30	4	2	18	63,299 2,580	18,737 19,932	\ldots	\ldots	\ldots
Oomurda 2nd class choki	\cdots	113 113	6	117 16	2	2	30	4	$\stackrel{\square}{2}$	18	2,580 45,917	19,932 22.364	\cdots	．．．	\ldots
Sookhi 2nd class choki ．．．	\cdots	113	7 6	16 195	2	2	30 \ldots	4	2 \ldots	18	45,917 $\mathbf{2 , 5 8 0}$	22.364 18,675	\cdots	．．．	\ldots
，bridge ．．．．	\cdots	115	7	26	2	2	25	4	2	15	44，003	63，510	．．．	．．．	\cdots
Khyrnugger 2nd class choki	\ldots	118	7	209	\cdots	\cdots	\cdots		\cdots	\cdots	2，580	18，110	\ldots	\ldots	\cdots
＂bridge ．．．		119	．．．	66	2	2	25	4	2	15	52，508	53，301	．．．	\cdots	\cdots
Aima lst class choki		122	．．．	166	2	．	\cdots	－	\cdots	ㄱ．．	12，365	97，345	．．．	．．．	\ldots
．．bridge ．．．．．		122	\cdots	200	\cdots	2	25	4	2	15	45，487	49，202	．．．	．．．	\ldots
Barrapoor bridge ．．．		124	6	166	2	2	25	4	2	15	31，846	61，390	\cdots	－	\cdots
Bidhun 2nd class choki．	\cdots	127	1	13	\cdots	\cdots	\cdots	\cdots	\cdots	18	2，580	18，920	\cdots	\cdots	\ldots
bridge ．．．．．．	．．．	127	1	100	\cdots	2	25	4	2	18	44，982	65，412	\cdots	．．．	．
Dotha 2nd class cholki ．．．	．．．	130	．．．	168	2	\cdots	\cdots	\cdots	\cdots	18	2，580	18，918	．．．	．．．	\ldots
＂bridge ．．．．．．	\cdots	130	\cdots	210	\cdots	2	25	4	2	18	44，783	1，60，028	．．．	\cdots	．．．
Muvowa 2nd class choki	．．．	132	6	167	1	．	\cdots	4	\because	18	2，580	18，918	\ldots	\cdots	．．．
＂，bridge ．．．．．．	．．．	132	7	1	2	2	25	4	2	18	42，824	2，99，815	\cdots	．．．	\ldots
Kukwan escape ．．．．．．	\cdots	134	7	173	2	5	6	1	1	．．．	20，419	1，20．868	．．．	．．．	\ldots
＂lst clase choki．．．	．．．	135	．．．	51	\cdots	－	\cdots	－	\because	\cdots	9，455	$\begin{array}{r}73.337 \\ 3.07 \\ \hline\end{array}$	．．．	．．．	\cdots
＂bridge ．．．．．．	．．．	135	．．．	149	2	2	25	4	2	20	45，102	3，07，709	．．．	．．．	．．．
Mudoopoor 2nd clase choki	．．．	138	\cdots	115	1	\because	\because	\cdots	\because	\cdots	2，580	19，018	－	\cdots	\ldots
Fh＇bridge ．．．	．．．	138	\cdots	160	\cdots	2	25	4	2	18	49，609	1，12，298	．．＇	．．．	\cdots
Khoondun bridge	．．．	140	3	41	2	2	25	4	2	15	32，119	68，113	．．．	\cdots	\ldots
Tuktowli 2nd class choki	．．．	142	3	47	\cdots	\cdots	\cdots	\cdots	．	\cdots	2，580	19，016	\cdots	\ldots	\ldots
＂bridge．．．．．．	\cdots	142	3	116	2	2	25	4	2	18	48,740	1，21，193	．．．	．．．	．
Bhosan 2nd class choki ．．．		145	1	114	2	\cdots		\cdots		\cdots	2，580	17，538	\cdots	．．．	\ldots
＂，bridge ．．．．．．	．．．	145	1	158	1	1	30	4	2	20	43，835	2，05，938	\cdots	＊－	．．．
Juggutpoor 1st clase choki	\ldots	147	\cdots	111	2						16，012	92，929	\ldots	－	\cdots
，${ }^{\text {b }}$ bridge \ldots	．．．	147	．．．	208	1	1	30	4	2	18	44.266	31，988	\cdots	－	\ldots
Runjeetpoor 2nd class choki	．．	150	1	148	2	\cdots		\cdots	\cdots	\cdots	2，580	18，918	\cdots	．．．	\ldots
＂bridge ．．．	\cdots	150	2	3	1	1	30	4	2	18	36，093	1，90，883	\ldots	\ldots	\ldots
Hoorkapoor 2nd clase choki	\ldots	153	2	57	．．．	－	\cdots	\because	\cdots	．．．	2，580	20,877 2,46793	\cdots	\cdots	\ldots
Kob bridge ．．．	\ldots	153	2	165	\cdots	1	30	4	2	\cdots	35，645	$2,46,793$ 19436	．．．	\ldots	\ldots
Koorsouli 2nd class choki	．．．	156 156	\ldots	136	2	\cdots	\cdots	\cdots	9	78	2,580 41,652	19,436 $2,75,254$	\cdots	\ldots	\ldots
\＃̈r bridge ．．．．．．	\cdots	156	\cdots	210	i	1	30	4	2	18	41,652 41,910	$2,75,264$ $2,08,619$	\ldots	\ldots	
Barra bridge ．．．．．．	．．．	158	3	73	1	1	30	4	2	18	41，910	$2,08,619$ 58,010	．．．	．．	
Müs lat class choki ．．．	\cdots	158	5	3	1	\cdots	\because	\cdots	\because	\cdots	35，617	58，010 $\mathbf{2 , 3 3 , 2 7 3}$	\cdots	．	
Muswanpoor bridge ${ }^{\text {Khujoori } 2 \mathrm{~d} \text { class chosi }}$	\ldots	161	\cdots	111	\cdots	1	25 \ldots	4	2	15	35,617 2,580	$2,33,273$ 14,341	．．．	\cdots	\ldots
＂bridge ．．．．．．		162	4	76	2	1	25	4	2	20	57，439	3，75，940	．．．	\cdots	－．
Dabowli eacape ．．．．．．		164	4	126	］	\cdots	\cdots	\cdots	\cdots	\cdots	48，426	3，18，913	\cdots	\cdots	37，532

(1.	2. Distance of the Work from the Myapoor Regulator.				3. Arches.				4. 	5. Measure- ment. Content of Masonry.	6.Materials Expended.				
											Bricks.				
					$\mid 12 \times 6 \times 3$						$\left\|\begin{array}{ccc} " 1 & " 1 \\ 12 \times 6 \times 2 \frac{1}{2} \end{array}\right\|$	$12 \times 6 \times 2$			
Dubowli regulator	$\begin{aligned} & \text { Milles. } \\ & \mathbf{1 6 4} \end{aligned}$	$\begin{gathered} \text { Furls. } \\ 5 \end{gathered}$	$\left.\right\|_{206} ^{\text {Yds. }}$	$\left.\begin{array}{\|c\|} \text { Feet. } \\ 1 \\ 1 \end{array} \right\rvert\,$		1	$\begin{gathered} \text { Feet. } \\ 20 \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { Feet. } \\ & 2 t \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \text { Feet. } \\ 12 \\ 15 \end{gathered}\right.$	18	Cubic Feet. 25,185	1,69,259	\cdots	...	48,000
Duknapoor, or Grand Trunk	167	3	196	2	1	20	28	2	25	27,785	76,284	1,08,541	...	16,589	
Cawnpuor Works:- No. 1 Gunj bridge \qquad	168	1	185	1	1	20			20	19,079	63,956	\ldots		63,496	
2 ditto \ldots	168	2	166	\cdots	1	20	2 d	12	20	12,103	64,986	\ldots	\cdots	65,696	
3 ditto \ldots	168	3	165	\cdots	1	20	2 L	14	20	12,328	60,906	23,920	
4 ditto ...	168	4	151	\cdots	1	20	$2{ }^{2}$	13	20	11,654	67,602	13,780	
5 Riddell's bridge	168	6	128	,	1	20	$2{ }^{2}$	$1 \frac{1}{2}$	20	9,246	63,000	11,000	
6 Course bridge	168	7	140	\cdots	1	20	2者	12	30	18,052	1,18,804		\ldots	13,598	
No. Lock Lower road bridge	169		183 57	1						78,311 12,185	2,72,781 71,500	15,950 \ldots	\ldots	26,21,682	
Lower road bridge No. 2 Lock a	169	3 4 4	57 126	2	1	20	2 l	14	30	12,185 47,244	71,500 51,313	\ldots	\ldots	15,000 $19,61,300$	
3 ditto...	169	4	167	2					...	47,244	51,313	21,880	...	13,61,000	
4 5 ditto .. 5 ditto \ldots \ldots	169	5 5	151 192	2		ot com	mmen								
Terminal Works \ldots... \ldots	169	6	13	2	\ldots	...	1,54,185			4,07,760	
Canal and esplanade, revetments, inlets, \&c.	\cdots	\ldots	\cdots	12,41,618	8,40,106	...	76,68,030	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& . Mater \& \[
\begin{gathered}
6 . \\
\text { fials Exper }
\end{gathered}
\] \& nded. \& \& \& \multirow{3}{*}{Description of the Work.} \& \multirow{3}{*}{Total Cost of the Work.} \& \[
9 .
\] \\
\hline \multirow{2}{*}{Boulders.} \& \multirow[b]{2}{*}{\begin{tabular}{l}
Block \\
Kunkur.
\end{tabular}} \& \multicolumn{3}{|c|}{Lime.} \& \multirow{2}{*}{Soorkee.} \& Sand \& \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
Name of the Executive \\
Engineer or Officer under whom built.
\end{tabular}} \\
\hline \& \& Stone. \& Kunkur. \& Earth. \& \& Bujree. \& \& \& \\
\hline \multirow[t]{2}{*}{Maunds.
\(\ldots\)

...} \& Cab. Feet.
... \& Cab. Feet.

... \& \[
$$
\begin{gathered}
\text { Cub. Feet. } \\
9,705
\end{gathered}
$$

\] \& Cab. Feet. ... \& Cub. Fect. 306 \& Cab, Feet. 205 \& \multirow[t]{2}{*}{| Grooves are provided at this bridge for gates to shut off the canal. A rajloniar head of 10 feet opening for the country between the Pandoo and Ganges is also attached. Gliats on both sides, and an inlet on the left above brldge, form parts of this work. |
| :--- |
| This is the flist of the Cawnpoor series of works. It has ghats on up-stream side, with inlets, but no rajbuha heads. Pilastered and rusticated piers. |} \& Not completed. \& Lieut. Hodgson.

\hline \& 3,925 \& \cdots \& 6,486 \& ... \& 291 \& 2,229 \& \& Not completed. \& Lieut. Hutchinson

\hline \cdots \& 2,620 \& ... \& 2,153 \& ... \& \ldots \& 2,284 \&) \& \&

\hline \cdots \& 2,760 \& ... \& 2,323 \& ... \& \cdots \& 2,268 \& \& \&

\hline ... \& 1,659 \& ... \& 2,175 \& ... \& 143 \& 2,038 \& \& \&

\hline \ldots \& ... \& ... \& 1,957
2,100 \& \cdots \& 1,957
420 \& \cdots \& \& \&

\hline ... \& ... \& ... \& 4,988 \& \ldots \& 225 \& 3,247 \& \& \&

\hline \cdots \& ... \& ... \& 18,556 \& ... \& 4,836 \& 15,137 \& Not yet complete \& \& SLt. Hutchinson,

\hline - \& ... \& ... \& 3,900 \& ... \& 60 \& 2,500 \& Not yet complete $\quad \cdots \quad \cdots$ \& 1,96,614 111 \& $$
\left\{\begin{array}{l}
\text { Lieut. Hodgson, } \\
\text { and Lt. Price. }
\end{array}\right.
$$

\hline \cdots \& * \& ... \& 10,403 \& \cdots \& 3,224 \& 6,327 \& \& \&

\hline \cdots \& 8,075 \& ... \& 5,657 \& ... \& 1,850 \& 4,926 \& \& \&

\hline \cdots \& ... \& \cdots \& 73,051 \& ... \& 24,935 \& 73,636 \& \& \&

\hline
\end{tabular}

APPENDIX K.

Reports on the Dimat and Bhosan Bridges.

No. 194.
From Lieutenant A. G. Goodwyn, Executive Engineer, Northern Division Ganges Canal, to Lieut.-Colonel P. T. Cautley, Director, Ganges Canal Works.

Sir,
Mussoorie, 12th February, 1850.
I have the honour of forwarding herewith the report in duplicate of the Committee which you in your letter No. 1,798, of 4th instant, ordered to assemble for the purpose of surveying the Dimat, Liberheri,

- and Munglour Bridges. This report is accompanied by a sketch, showing the general direction of the voussoirs of the eastern arch of the Dimat Bridge, illustrative of the remarks of the Committee on this point, and also by a letter, in original, from Lieutenant E. Sharpe, assistant executive officer of the Second Division Ganges Canal.

2. The letter of the Executive Engineer Second Division Ganges Canal, received under cover of your own, is herewith returned as directed.

I have the honour to be, \&c.,
(Signed) A. G. Goodwyn, Lieutenant, Executive Engineer, Northern Division Ganges Canal.

From Lieutenant Edmond Sbarpe, Acting Assistant Executive Engineer, Ganges Canal, to Lieutenant E. Fraser, Executive Engineer, Munglour Division Ganges Canal.

Dimat, 29th January, 1850.
In reply to your letter dated the 26th instant, I have the honour to return the following replies to the queries contained in it:-
lst. The arching of the eastern arch was commenced on the 7th December, 1849, and was keyed on the 17 th idem.

2nd. I made it a point to visit the bridge every day, except when any other important business should detain me; but from this, or any other cause, a greater lapse than that of one day never intervened between any two consecutive visits.

3rd. I obtained a supply of water for the bridge masonry from the village of Dimat, and two days' supply was always reserved in a tank built for the purpose, whence it was issued to the top of the bridge by bhishties in sufficient quantities; and whenever I saw the work going on, the bricks were invariably soaked before being given to the masons, as it seemed in a manner habitual to them, and I fully believe that they were always so wetted.

4th. Sergeant O'Farrell, Assistant Overseer, never missed one day in his attendance at the bridge, from
the commencement of the arching to the 17 th of December, 1849 , when he was seized with an attack of illness which precluded his attendance. That he was also punctual in the time of arrival and departure, I myself ascertained by varying the hours of my own visits, sometimes arriving there by sunrise and sometimes at sunset.

I have the honour to be, \&c.,
(Signed) Edmond Sharpe, Lieutenant, Acting Assistant Executive Engineer, Ganges Canal.

SECOND DIVISION GANGES CANAL.

Report of a Committee which assembled in accordance with orders contained in letter No. 1,798, dated 4th February, 1850, from the Director of the Ganges Canal Works to the President, to survey the Dimat Bridge over the Ganges Canal, and also those at Munglour and Liberheri.

President-Lieutenant A. G. Goodwyn, Executive Engineer, Northern Division, Ganges Canal.
Members $\left\{\begin{array}{l}\text { Lieutenant E. Fraser, Executive Engineer, Second Division, Ganges Canal. }\end{array}\right.$
\{ Mr. Thomas Login, Assistant Executive Officer, Northern Division, Ganges Canal.

Subject on which a Report is called for by the Director.

1. Quality of material, brick, and cement.
2. Quality of workmanship in general, thickness of seams of arch especially.

Report and Remarks of Committee.
The cement is composed of one part stone lime to two parts soorkhee, and is of excellent quality. The dimensions of the bricks used are $12 \cdot 225^{\prime \prime} \times 5 \cdot 975^{\prime \prime} \times 2 \cdot 8875^{\prime \prime}$, and they are of the best description, thoroughly burnt.

The method taken by the Committee in arriving at the average thickness of seam has been to measure the original length of the arches over the extrados and under the intrados, taking the mean between these two measurements; then to count the number of courses on edge in this length. This number, multiplied by the average thickness of bricks, derived from a measurement of ten taken out of one of these arches, has then been subtracted from the mean length of arch, in inches, as obtained above, and the remainder being divided by the number of seams bas given the following averages:-

In the east arch	\ldots	\ldots	\ldots	-3857 inch.
In the centre arch \ldots	\ldots	\ldots	$\cdot 3397$ ",	
In the western arch	\ldots	\ldots	$\cdot 3857$ ",	

In the opinion of this Committee, although the materials used are good, the masonry, owing to bad workmanship, is entirely the contrary, except in the outer faces of the arches. The Committee are of opinion that it is owing to this difference in the quality of the work that the outer portions have suffered crushing on the striking of the centres. In that arch, the eastern, the middle of which is exposed, the Committce discovered a want of bedding of mortar for the bricks, which, they think, is of itself sufficient to account for the failure of the work. In a letter from Lieutenant E. Sharpe, the assistant in executive charge of the work, to the address of the executive engineer of the Second Division, that officer reports that the bricks were, when he visited the works, invariably soaked before they were giren to the masons to lay, and he expresses his belief that they were always so wetted. In this belief the Committee cannot concur, should it be intended to be implied that the bricks were generally laid in a dripping state, or that sufficient water was used; and they remark that this being Lieutenant Sharpe's first masonry work, and he being practically unaware of what essential importance the free use of water in laying masonry in a dry climate is, is probably the cause of the

Subject on which a Report is called for by the Director.
3. State of advance of masonry in wings and spandrils at period when centerings were struck.
4. State of induration of masonry of abutments, how long the abutment masonry had been allowed to stand before the arches were built, and how far earthwork was completed in their rear, at the time when the centerings were struck.
5. Action of thrust upon abutment, if any, to be described.
6. Whether to protect the works from contingencies arising from neglect or careless superintendence on part of the establishment on the work, either increased dimension to the abutment, or modification to the direction of the thrast of the arch, may be advantageously designed.
7. The amount of supervision given by the assistant and overseer in charge of the particular work.

Report and Remarks of Committee.

discordance in their reports. The Committee also remark that the bricks were not dressed before being laid, and that the voussoirs in the interior of the eastern arch, the only one in which they have been able, by the removal of the masonry, to examine them, have not everywhere been constructed perpendicular to the curve of the extrados, as they were ordered to be, and should have been. Accompanying is a sketch showing this obliquity at various points along the interior masonry of the eastern arch. The Committee are aware that much of this obliquity is due to the sinking of the arch, but think that some also is owing to imperfect workmanship. The bond prescribed by the executive engineer, as described to the Committee by that officer, has not been carefully attended to; and the Committee observe an undue preponderance of headers (i.e. bricks set vertically, or nearly so).

When the centres were struck, the wing walls were level with the point where the curve of the extrados meets the impost of the arches, and the spandril walls had heen carried up 2 feet 8 inches higher.

The abutment masonry had stood about seventy-five days before the arches were built. The induration of the cement is now very great, causing it to offer about the same resistance to an iron point as a good peela brick. The earthwork in rear of abutments was completed to the top of the wing walls prior to the final lowering of the centres of both eastern and western arches; but the eastern arch was lowered 6 inches when the earthen backing of the abutment had only attained the level of the springing line of the elliptical curve.

No appearance exists of any injurious action having occurred.

Four bridges having already been successfully built in the method designed for this one, the Committee consider the merits of the plan established, and recommend no modification of it. The causes of failure appear entirely independent of the plan.

The Committee having in their answers to question 2 recorded their opinion of the causes of failure, beg to refer to the accompanying letter from Lieutenant E. Sharpe, regarding the amount of supervision bestowed on the work by himself and by Sergeant W. O'Farrell, late assiatant-overseer of this division; and though not specifically ordered to report on this point, considers this supervision, as regards the number of visits of Lieutenant Sharpe, and the duration of the attendance of Sergeant O'Farrell, sufficient to warrant an expectation of good work.

The Committee further remark, with reference to the centre arch, which, having been lowered only 1 inch, at present atands uninjured, that they are satisfied, after a careful examination, that should the centres be removed, failure here also will be

Subject on which a Report is called for by the Director.

Report and Remarks of Committee.

the result. They therefore recommend that it be immediately dismantled, without lowering the centres any further, or permitting further induration of the cement, as the former operation would, in their opinion, crush many bricks, and further setting of the mortar would increase the difficulty of removing the arch, without affording any fair prospect of advantage.

The Committee have inspected the Munglour and Liberheri bridges also, which they find to be sound and well built.
(Signed) A. G. Goodwriv, Lieutenant, Executive Engineer, President.
(Signed) E. Fraser, Lieutenant, Executive Engineer, Member.
(Signed) T. Login, Assistant Executive Officer, Member.

Dimat Brdge, Eastern Arch.
Showing direction of Voussoirs at distances of 5 feet, measured from the centre.
(The dotted lines show what the direction of the Voussoirs should be.)

Nọ. 209 of 1851-52.

From Lieutenant C. W. Hutchnnson, Executive Engineer, Sixth Division, Ganges Canal, to Lieutenant-Colonel P. F. Cautley, Director, Ganges Canal, \&c.

Sir,
Camp, Kukon, 28th February, 1852.
I have the honour to report to you that a few days after the entire removal of the centering (an earthen one) of the Bhosan arch, it fell.

This arch (and one of the skewbacks) was built by contract by Mr. Hussey under the immediate supervision of Madhoram, Sub-Assistant Civil Engineer.

I attach a sketch of the state of progress in the adjoining side passages, \&c., and a dotted line showing the position it assumed on falling.

Bhosan Bridge Arch.-February, 1852.

The cause, as it appeared to me, of this accident, and as Lieut. Hume (whom I sent for to meet me on the occasion of my visiting it after it fell) also thinks, was solely the very bad quality of the masonry in the backing to the arch (built by Mr. Hussey) and in the great quantity of mortar used, and in the very inferior quality of this mortar.

This skewback was the first masonry on the bridge that was built by Mr. Hussey. The abutment and the other skewback were built previously by Madhoram, and are much better built.

Madhoram states that he was absent on other works for the two or three days during which this was built, and was not aware it was so bad, although he was aware of the inferior quality of the mortar, as he saw it used on his return in other parts of the masonry, and at once insisted on its being properly prepared (it was not even ground or mixed in the mill at first), and saw that better lime was supplied to Mr. Hussey.

When I first visited the work, to see the quality of Mr. Hussey's masonry, I thought it so bad, in the portion of the side-passage walls that were built, that I had them pulled down, and particularly pointed out to Madhoram, that he was to allow no such masonry to pass. The skewback was covered over on the top, and I did not observe that it was so bad.

The arch itself was very well built, and the mortar used in it is very good, and the joints are fine.
The skewback has been, as shown in the sketch, thrust off the abutment almost; and on examining it, the centre of it appeared to have been stuffed with mortar, and this mortar had no hold of the bricks whatever. The mortar was all in powder. The arch, therefore, had nothing whatever to resist its thrust save a few bricks.

Mr. Hussey discontinued all masonry work in the middle of January last, not finding sufficient profit in the rates I allowed him.

Having allowed him to carry on the arch and other masonry work without having discovered the badness of the skewback built by him, I conceive that I cannot in any way now call upon him to rebuild any part of the fallen masonry, or even find fault with him.

The total loss by this accident is about 230 rupees, and this will not cause the estimate for this bridge to be exceeded; especially as so much masonry has been struck off by the omission of the ogee walls.

The skewbacks are now being rebuilt, and after they have had four months to indurate, the arch will be again turned.

I have, \&c.,
(Signed) C. W. Hutchinson, Lieutenant, Executive Engineer, Sixth Division, Ganges Canal.

APPENDIX L.

System of Account-Keeping introduced into the Roorkee Workshops by Mr. Harry Marten.

Memorandim on an Improved System for conducting and keeping the Accounts of the Roorkee Workshops.

The communications which have taken place between Colonel Cautley and myself, having ended by his deciding that the management and account-keeping of the Roorkee workshops, on their becoming independent of any particular work, shall be made to correspond as nearly as possible with what would be the system were the factory to be worked by a private company; and having been desired to draw up a memorandum on the plan which should be alopted for carrying out the object proposed, I beg leave to state that my general views regarding the Roorkee workshops are these :-
2. That they should be looked upon as, what they must ultimately become, a large factory and general furnishing warehouse, whose objects are to manufacture and retail out every description of article required for engineering purposes, whether undertaken by the Government or by private individuals; and that, in order to ensure these objects being gained, the institution should be conducted on the principles which guide similar concerns the property of private companies-the only difference being, that a private company would work its factory for pecuniary profit, the Roorkee workshops would be worked merely to cover their expenses.
3. The principal features involved in these views are:-1st. That the factory being conducted on the above principles, the director of the Ganges Canal Works should represent the interests of its proprietors (the Government of India), and be vested with powers, and act in every way, as if he were "Managing Director" (by which designation I shall hereafter refer to him) to a private company; 2ndly. That the factory be made to pay all the expenses incurred upon it-except for the cost of the original buildings and motive power, upon which (they being held as "dead stock," the property of the Government) it should pay the usual 5 per cent. interest only; 3rdly. That a commercial system of bookkeeping be introduced into the office of the factory; 4 thly. That as the business of the factory will embrace sales to private individuals, and the supplying of Government officials, the system of payment should be the same in both cases.
4. On the first point, there is hardly any necessity for my remarking upon the duties of the managing director: he will of course watch with all possible vigilance the progress and growth of this promising factory, supply funds whenever necessary, inspect the works and examine the accounts, advise and control the superintendent in every possible way without harassing him with useless details, make reports to Government on what had been done and was doing, submit such periodical balance-sheets and progress-reports as would satisfy the Government as to the working of the concern, \&c. \&cc.; but, in order that his interest in the welfare of the factory may not flag, he should be vested with some amount of discretionary power.
5. In elucidation of the second point, I would refer to the books of account appended to this paper, and to explanations of the same which will presently follow under the title of "Instructions to Superintendents."

It will be seen that all expenses on repairs of buildings, permanent or supervising establishment, wear and tear of tools, interest on dead stock, which is the extent of the contingent charges during the month fictitiously represented, are debited to "profit and loss." To meet this amount, a percentage (which in the course of a few months may be very approximately estimated) on all manufactured goods going out of the warehouse is charged, and the amount so realized credited to "profit and loss." Thus the factory not only exhibits itself as no expense to the Government, but returns 5 per cent. on the value of its dead stock; and, moreover, at once distributes its working expenses amongst those who have the best right to bear them, viz., the purchasers of manufactured articles, whether private individuals or Government departments.
6. On the third point, also, the best illustration of the advantages of a good system of bookkeeping that I can give, is the books themselves, and the explanations before adverted to ; but to make this paper complete, I must, as briefly as possible, refer to them here. The particular system which I have illustrated in the appended forms is that known as "double entry," and is the one always adopted when large interests are at stake, and when a merchant is desirous of showing good books: it is accuracy itself, for no error can creep into the accounts without being detected when the balance-sheet is being made out. With a careful bookkeeper, the superintendent is relieved of all anxiety on the score of his accounts; every transaction being stamped in the day-book the moment it occurs, the rest follow in succession, and with this surety, the superintendent can devote the whole of his time to his legitimate duties. As explained in the instructions, the receipt or payment of money is confined entirely to the office; nobody las the handling of money but the cashier ; and the subordinates of the factory who incur expense, either in labour or withdrawal of material from store, having each made up his portion of the daily abstract, are free of accounts. No delay, therefore, ought to occur in the books being kept up with regularity and expeuditure, and a day's notice should be sufficient to produce a balance-sheet comprehensively showing the state of the affairs of the factory on any given date: in addition, the Government is assured as much as may be against fraud; for the foremen, overseers, and store-keepers, having nothing to do with payments, and the cashier being able to disburse money only on the indelible authority stamped on the daily abstracts, no collision could possibly exist without being detected by a watchful manager. The "instructions" provide fully for the Government, and its offices of account being satisfactorily accounted to for what, in commercial phrase, may be styled the risk embarked in the factory, while, at the same time, from the comprehensiveness of the system of bookkeeping, the office work, not only in the factory, but in all the offices of control, is reduced to a minimum.
7. On the fourth point, my object is to secure the factory from the introduction of varying principles in the conduct of its account, which would inevitably create confusion, and suggest excuses for arrears. As the sales to private individuals must necessarily be cash transactions, I would make this the guiding principle, and demand similar cash payments from the various departments of Government that may purchase from the factory. Although this is a mere question of principle, it has many advantages over the present course; for the factory would be saved from submitting elaborately detailed bills twice over (one to Government and one to purchaser), and all the correspondence requisite for getting bills passed and their amounts debited to the various departments. And the department supplied with articles, having paid cash for them, is certain to bring the transaction on its books: not only, therefore, does that particular department become at once answerable for the cost of articles necessary to its operations, but the head offices of account are able to rapidly adjust the true value of the Government property in each of its departments-at least, as far as trausactions with this factory are concerned. The money returns from these sources would often render the factory independent of advances from Government, and in this item also, save some measure of labour to its own and other offices of the State. The monthly account current which is to be submitted to the accountant shows how the factory would account for money so received.
8. In the accompanying forms of books and statements I have endeavoured to provide for the general wants of the factory; and in proceeding now to explain them, I shall enter upon other topics which will not only tend to make the proposed system understood, but be suggestive of the orders that may be necessary ou the separation of the factory from the Ganges Canal Works, as "Instructions to the Superintendent."
9. The managing director has the general control of all the establishments attached to the Roorkee
factory; in him is vested authority for the appointment and dismissal of all permanent establishment, which comprises, in addition to the superintendent, deputy superintendent, practical engineers or foremen, overseers, misturees, warehouseman, storekeepers, bookkeeper, and clerks in the office, and no appointment or dismissal can be made in any of these ranks without his sanction.
10. The superintendent has the immediate and particular control of all the establishments, and of every department attached to the factory, and he has the arranging for, and disposing of, labour in such strength as the requirements of the work in progress, or about to be set in progress, may call for.
11. The superintendent's especial duties are, control, management, seeking, selecting, and purchasing material best adapted to the purposes of the factory, devising methods and ways for turning to the best use all the motive power, machinery, establishments, \&c., that he has at his disposal, introducing improvements into existing designs, adapting simple machinery, calculated to come within the comprehension of the natives, to the purposes of more costly and intricate inventions, \&c. \&c.; and, in fact, while exercising a wholesome check upon everybody and everything placed under him, to endeavour by every means in his power to promote progress, and successfully work out the object of the founders of the institution.
12. The superintendent might place his office under the immediate charge of the deputy superintendent as one of his duties; and as all money is to be received into, and paid out of the office, he might constitute him "cashier"-he keeping the cash day-book (Form 1).
13. In the working of the factory, it will be found convenient to keep the manufactured goods distinct from all other stores, and of having a warehouseman (European assistant overseer) in charge of them, and for executing all orders that may be received. In the course of time, as the manufactured articles increase in extent and interest, a show-room might be erected, and the things so arranged, that visitors might at once see the quality and description of work the factory was able to turn out. The warehouseman should keep his account of stock in hand and issues, in a tabular form, similar to that (Form 2) appended for the storekeepers, so that the balance remaining in the warehouse, after each day's orders had been executed, might be seen at once, but the remaining account of the "receipts and issues" of each day should be kept in the Forms $2 a$ and $2 b$.
14. The superintendent, being the receiver of all orders, would make any remarks upon them that he considered necessary, and send them to the office for entry into the order book (Form 3). This order book being sent to the warehouseman, he would execute them to the extent his stock admitted, and fill up the columns left in the book with information expected from him; with goods despatched he would always send a " list of stores despatched" (Form 4); and should the goods be going to a clistance, which rendered an advance of cart hire necessary, he would note on this list the total amount of cart hire to be paid, the advance made by the factory, and the balance to be paid by the receiver of the goods. The presentation of this list by the chuprassy going in charge of the stores to the cashier, would be sufficient warrant for his paying the amount indicated. The invoice of such despatches would be made out from the order book and sent off by post, after its contents had been copied into the invoice book (Form 5). Every manufactured article sent out of the warehouse is to bear a percentage to cover the cost of the expenses of the factory; and this is added ou in the office, the warehouseman's rates being those for the cost of material and labour only.
15. The office attached to the factory is to be formed and conducted on commercial principles; in it is to be comprehended every transaction connected with the working of the concern; nothing should go out of or come into the factory without passing through it; all money must be received into and paid from it; and with exception to muster-rolls (Form 8) and stock registers, no accounts whatever are to be kept away from it. The Daily Alstract Book will lie open in the office, and such subordinates as have to account for lahour employed under them, stores issued or received, \&c., will attend at the time that may be fixed upon for the purpose of entering into it the results of their day's operations. I deem it proper to leave to the superintendent, whose duty it especially is, the fixing of each subordinate's share in the filling up of this daily abstract; but my idea is, that a most excellent check might be established over this, the nost important part of the factory, by the foremen and others luaving squads of workmen under them being made to keep a memorandum of the people employed, the materials received from stores, \&c., in each of their sections; and when the general musterer was about to enter the details under each head of work, that they should compare
their memoranda with the return of the musterer-the same with the storekeepers-and attest the correctnesw of the entries by affixing each of their names to that portion which applied to their several sections. This daily abstract would form one of the most important of the auxiliary books required: the form already in use in the shops (Form No. 7) is probably as good a one as can be devised, and the only addition wanted is a general abstract, to be made up by the bookkeeper, in which he should extract the rate for each article manufactured and transferred to the warehouseman's books: generally, this would be made up at the end of every month for posting to the principal books; but if the article completed was to be sent away immediately, the abstract could at once be made out. The other auxiliary books are the Cash Day Book and the Stock Books, for which forms are given, and which require no explanation, their purposes being plainly stamped on their pages.
16. The principal books are the day-book, journal, and ledger; these are to be kept on the system known as "double entry," the grand objects being to secure to the factory a faithful record of its transactions with the least anount of labour, and to show that the factory pays the whole of its expenses, and returns to the Government 5 per cent. interest on its outlay in buildings and motive power. In drawing up the forms of these books, I have supposed that the superintendent has just received independent charge of the factory; that he has taken over from Lieut. Goodwyn the whole of the dead stock, machinery, tools, raw material, and manufactured goods, that exist on the date of the transfer; and that he, subsequently, receives an advance of money from the managing director. By the first account in the Ledger, "The Government of India," I prove that it gets the credit for these as well as for the interest on its dead stock, and by the last account, "The Balance Sheet," that the credit so given is the actual capital of the factory, and that the books are correct.
17. The Day Book and Journal are kept in one book; the former occupying the left page, the latter the right one; and much time and trouble are saved by this arrangement, besides the surety of accuracy; for if the entries in the Journal (which is the index to the Ledger) are correct, the totals of both its columns must agree, and also correspond with the total of the Day Book column. In the Day Book, we commence with an entry representing the value of the stock which we have to work upon, then follows the in-comings and out-goings as they occur; and on the last day of the month we bring forward in abstract the data afforded by the daily abstract in the expense that has been incurred in manufacturing; and the month's transactions are closed by the entries of all the contingent expenses of the month.
18. The Journal is deduced from the Day Book, and shows how the transactions are to be posted to the Ledger. Each Day Book entry calls for one Dr. and one Cr. in transferring it to the Journal, for the principle is that the Drs. must be equal to the Crs., and, therefore, the first item in the Day Book is transferred to the Journal as "stock Dr. to factory buildings, \&c.," and "Cr. to the Government of India," whose property it is. The next entry in the Day Book is a draft, which it is not convenient to cash at once; it is consequently " Dr. to bills receivable," and " Cr . to the Government of India;" and when the cashing of the draft did take place, it is " Dr. to cash," and "Cr. to bills receivable;" the succeeding item "sales of manufactured goods," is " Dr. to Lieut. Goodwyn," the purchaser, and "Cr." partly to " manufactured goods," and partly to "profit and loss," the latter amount being the sum charged for factory percentage beyond the actual cost of the article, and which is a set-off to the contingent charges of supervising establishment, percentage for wear and tear of tools, and interest on dead stock, which are all " Dr. to profit and loss:" the folios of the Ledger to which the items are posted are also given.
19. The Ledger is the chief of all the books: a reference to it shows the exact state of each account, and also of the affairs of the concern for which it is kept; a balance-sheet drawn up from it, at any time that may be required, determining at once whether the factory is going on well or otherwise. In the book that I have prepared, the entrics in the Journal before described are all posted to their separate accounts, and by following them out it will be easy to understand how the balance-sheet tests the correctness of all the accounts that have gone before it. I have only further to remark on this book that I have judged it proper that the profit and loss account of the Roorkec factory should admit on its debtor side only those contingent charges of its establishment, repairs of buildings, \&c., which the purchasers of manufactured goods have
a right to pay, and on its credit side the sums realized by the percentage charged upon such goods; and that the value of the labour performed by steam-engines, after deducting the expense of working them, should, instead of going to the credit of profit and loss, form a fund either to decrease the amount value of dead stock, or to meet any unforeseen accident that may occur. This idea having been carried out in these accounts, we find that, after accounting to Government for all that is its due, there is a sum of 2,590 rupees still to be worked off by the charge of factory percentage on manufactured goods; the value of the stock of manufactured goods is 16,750 rupees: the 10 per cent., which has been assumed for the month illustrated, upon this sum is not enough therefore to cover the balance at debit of profit and loss, and during the subsequent month the factory percentage charge must be raised to 15 per cent. : accordingly, as each month's balance of profit and loss is exhibited with reference to the value of the stock of manufactured goods, so must the factory percentage be raised or decreased. As the charge for establishment, repairs, interest, \&cc., is nearly a constant quantity, the percentage fluctuates according to the work done, and the superintendent will therefore see that the more work he executes the lower will be the rate for factory percentage, and, consequently, the greater the credit due to his management. On the steam-engine working account, we see that there is a fund of 2,400 rupees to meet any accidents or for appropriation as may be decided upon.
20. The balances should be struck every month-the value of stock in hand being taken from the accounts. At the close of each year, it would be a safeguard that the balances of stock should be corrected by an inventory of everything being taken.
21. The book-keeper attached to the factory will understand that he is responsible for the correctness of the books, and for their being brought up with regularity. If, at the managing director's inspections, this is found not to be the case, the book-keeper alone will bear the censure.
22. Every manufactured article sent out of the factory is to be paid for by the purchaser, whether private individual or Government official, and the amount so realized carried to the Cr. of the factory by cash being made Dr. When other money is required for the purposes of the factory, application is to be made to the managing director.
23. The superintendent will submit to the managing director as soon as each month's accounts are closed :-l. Copy of the Ledger account with the Government of India; 2. Copy of the Ledger balancesheet ; 3. Account current (Form 6); 4. Copy of the Ledger cash account; 5. Copy of the abstract of the daily abstract; 6. Progress reports; 7. Acquittance rolls for salaries. Nos. 1, 2, 3, and 6, will be forwarded by the managing director to the military board for their and the Government's information. No. 3 will also be sent to the accountant, accompanied by the acquittance roll. Nos. 4 and 5 will be retained in the managing director's office, and will be his checks upon the factory.
24. The papers above indicated as having to be submitted to the Board will render every information to the Government that could possibly be desired. No. 3, from being in detail as regards the debits which are due to other departments for the purchase of manufactured goods, will place in the hands of the Board and accountant the means of checking the charges brought forward in those departments.
25. Changes in old-established customs, no matter how beneficial they may profess to be, are generally looked upon with suspicion ; and, at first sight, it may be thought that in the proposals I have made there is an attempt to separate this particular institution from the connection and control which the Govermnent now exercises over its several departments : I would, however, disclaim any such intention, and urge that the only object I have, and I trust that the preceding pages have proved it, is to introduce into this embryo factory and general furnishing warehouse sounder systems of account keeping, by which it shall have every encouragenent to proceed on and arrive at that state of usefulness which is contemplated by its founders; and at the same time protect the interests of the Government immeasurably better than the present imperfect system admits of.

23 rd June, 1852.
(Signed) Harny Marten, Assistant.

Form 1.-Form of Cash Day-Book.

Form 2.-Stonekefper's Account of Receipts and Issues of Inon.

Date.	From whom received, or to whom issued					Bar rolled Iron 3 inches.	Bolt Iron tinch.	$\begin{gathered} \text { Bolt } \\ \text { Iron } \\ 1 \text { incl. } \end{gathered}$	Angle Iron 1 by $\frac{1}{8}$.	$\begin{gathered} \text { Angle } \\ \text { Iron } \\ 1 \frac{1}{2} \text { by } \frac{3}{10} \end{gathered}$	Rolled Iron 2 inches.
$\begin{array}{r} 1852 . \\ \text { May } \quad 1 \end{array}$	From Lieut. Goodwyn			mos.	mDs.	mps.	mos.	mps.	mids.	mids.	mde.
				100	100	100	200	500	500	400	-
, 10	To Mr. - , foreman			50	...	50	...	100	-	-	-
, 20	May 10 , balance ... From Monkland Company	...	$\begin{gathered} \ldots \\ \ldots \end{gathered}$	50	100	50	200	400	500	400	-
				500	\ldots	500
	May 20, balance		550	100	50	200	400	500	400	500
$\begin{array}{ll} & 31 \\ " & 31 \end{array}$	To Mr. ——, foreman To Mr. ——, freman	$\begin{aligned} & \cdots \\ & \ldots \end{aligned}$	$\begin{aligned} & \cdots \\ & \cdots \end{aligned}$	50	50	30	\cdots		\ldots	50	100
				50	25	10	100	300	-	-	-
				100	75	40	100	300	...	50	100
	May 31, balance	450	25	10	100	100	500	350	400

Form 2a.-Book of Receitts.

Form 2b.-Book of Issues.

Date.	No. of Work.	Description.						No.	Quantity.	Remarks.
Nov. 1853									mos. ${ }_{\text {cher }}^{\text {s. }}$	
	28	Phowrah blades sockets						20	$\begin{array}{rrrr}1 & 2 & 3 \\ 0 & 18 & 0\end{array}$	Making up. Ex." engineer.
	28	Second-class nuts	\ldots	...	\ldots	\ldots	...	20	$\begin{array}{rrrr}0 & 18 & 4\end{array}$	
	32	Leather buckets	\ldots	\ldots	...	\ldots	\ldots	20	...	
	32	Country twine	\cdots	0100	
	Sold	Second class	\ldots	0	Mr. Login.
	"	Putty ...	\cdots	\cdots	\cdots	...	\ldots	\cdots	0	Dr. Burr.
	2	Old copper	\ldots	$0 \begin{array}{lll}0 & 4 & 0\end{array}$	Brass furnace.
	2	Zinc		\ldots	\cdots	\ldots	0010	.
	1	Old iron pieces	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots	$\begin{array}{llll}2 & 4 & 6\end{array}$	Forges.
	1	Iron, flat bar	$417 \quad 3$	"
	1	" square	\cdots	$\begin{array}{llll}0 & 24 & 8 \\ 5 & 18 & 4\end{array}$	"
	1	" rod	5 5 0 184	"
	1	s", Kheree	\cdots	\cdots	\cdots	\cdots	\cdots	0290	"
	1	Shear steel	$\begin{array}{lll}0 & 1 & 8\end{array}$	"
	1	Cast steel	\cdots	\ldots	0	"

Form 3.-Form of Order Book.

[^8]Form 4.-List of Stores despatched to Colonel Narier, Civil Engineer, Punjaub, in part of his Order, dated 1st July, 1852.

Bholee Bux, Chuprassy in charge:-						
Jhams for block-sinking ...		\ldots	\ldots	...		
Windlasses for ditto		...	\ldots	...		
Phourahs without handles		\ldots	\ldots	...		100
Brick-making machine						

Conveyance :-
Two four-bullock carts, engaged to deliver the above articles at
Lahore for 30
Advanced by Roorkee workshops 5
Balance due, to be paid by Col. Napier 25
Roorkee Workshops, July 5th, 1852.
A. B., Warehouseman.

Fohm 5.-Form of Invoice Boor.

Date.	-	Rate.	Amount.	Total.
May 10	Lieut. Goodwyn, Executive Engineer, Northern Division Ganges Canal :- 40 side tilt ballast wagons, complete with, \&c. each Add factory percentage, at 10 per cent.	$\begin{array}{ccc} \text { n. } & \text { A. } & \text { P. } \\ 100 & 0 & 0 \end{array}$	$\begin{array}{\|rrr} 4,000 & 0 & 0 \\ 400 & 0 & 0 \end{array}$	Rs. A.
	Grand total	\cdots	\cdots	$4,400 \quad 0 \quad 0$
May 25	Nychul, carpenter, for cash :- 1 chest of carpenter's tools each Add factory percentage, at 10 per cent.	$100 \quad 0 \quad 0$	$\begin{array}{rrr}100 & 0 & 0 \\ 10 & 0 & 0\end{array}$	
	Grand total	\cdots	\cdots	$110 \quad 9 \quad 0$
May 31	Factory :- 1 chest of carpenter's tools each 1 chest of smith's tools each	$\begin{array}{rrr}100 & 0 & 0 \\ 50 & 0 & 0\end{array}$	$\begin{array}{rrr}100 & 0 & 0 \\ 50 & 0 & 0\end{array}$	
				$150 \quad 0 \quad 0$

Form 6.-For the Month of May, 1852.

Day Book.

AND JOURNAL.

Jodrnal.

LEDGER.

Dr.	Dead Stock.										Cr.
$\begin{gathered} 1852 . \\ \text { May } \end{gathered}$	To value of	1	80,000	$\begin{gathered} 1852 . \\ \text { May } 31 \end{gathered}$	By balance	6	80,000
June 1	To balance ...				80,000						

Dr.

$\begin{array}{r} 1852 \\ \text { May } \quad 1 \end{array}$	To value of ...	\ldots	...	1	20,000 150	$\begin{gathered} 1852 . \\ \text { May } 31 \end{gathered}$	By profit and loss ," balance	\cdots	1	$\begin{array}{r} 500 \\ 19,650 \end{array}$
	Total	\ldots	\ldots		20,150		Total	\ldots	20,150
June 1	To balance		19,650						

Dr.
1852.
May $\quad 1$

Dr.		Bills Receivable.								Cr.	
Date.	-		Folio.	Amount.	Date.	-				Folio.	Amount.
$\begin{gathered} 1852 . \\ \text { May } 5 \end{gathered}$	To Director's draft ...	\cdots	1	$\begin{gathered} \text { Rs. } \\ 10,000 \end{gathered}$	$\begin{gathered} 1852 . \\ \text { May } 15 \end{gathered}$	By cash	\ldots	\ldots		1	ns. $10,000$

Dr. Liedt. GoodWYn, Executive Engineer, Northern Division Ganges Canal. Cr.

Dr.
Cast.
Cr.

Dr.			Phofit	nd Loss			Сл.	
1852.				$\begin{array}{r} 1852 . \\ \text { May } 10 \end{array}$	By manufactured goods			400
May 31	To repairs buildings	1	1,000				1	
	"permanent establishment ...	1	1,000		" " "		1	10
		1	500		", balance ... "...	\cdots	6	2,590
	", interest on dead stock ...	1	500					
	Total		3,000					
June 1	," balance	2,596		Total	3,000
Dr.	Steam-Engine (Working Account).						Сп.	
$\begin{gathered} 1852 . \\ \text { May } 31 \end{gathered}$	To repairs, attendance, \&c. " balance	$\begin{array}{r} 1 \\ \ldots \end{array}$	$\begin{array}{r} 100 \\ 2,400 \end{array}$	$\begin{gathered} 1852 . \\ \text { May } 31 \end{gathered}$			1	$\begin{array}{r} 2,000 \\ 500 \end{array}$
						\ldots		
					" " "	\ldots		
					Total	...	\ldots	2,500
	Total	...	2,500	June 1	, balance	2,400

N.B.-In actual practice it has been found better to carry the profit on this account to meet the charges for wear and tear of machinery.

Form 8.
No. 26.
November, 1853.

Dead Stock! (the Property of the Government of India), Roorkee Factory.

voL. III.

II II
Dr.

APPENDIX M.

List of Books belonging to the Ganges Canal Professional Library on the 1st of April, 1854.

Buchanan on Tools and Machines, plates, folio . . Vola.
Buffon's Cours d'Eau, 8vo 2
Traités d'Irrigation, 8 vo
3
" " plates, demy 4to . . I
Builder, 1843-1851, royal 4to 9
1852, royal 4to 1
Buruett's Patent Process of Preserving Timber, \&c., 8vo 1
Byrne's Practical Model Calculator, 8vo . . 1
Calcutta Journal of Natural History, 8vo . 8
Cautley's Reports on Canals, N. W. P., fcap . . 1
Civil Engincers' and Architects' Journal, 1838-1851, roy 4to 14

$$
\Rightarrow \quad 1843 \text { and } 1844, \text { roy. } 4 \text { to } 2
$$

" $" \quad$ ". 1852, royal 4to 1
" Institution, 'Transactions of, 4to . 3
Clarke's Britannia and Conway Bridges, demy . . 2
" " $"$ plates, imp. . 1
Conversations on Chemistry, 8vo 2
Craig's Lectures on Drawing, 8vo . . . 1
Cresy's Encyclopadia of Civil Enginecring, 8vo . . 1
Dana's System of Mineralogy, 8vo . . . 1
" Manual of Mineralogy, post 8vo . . . 1
Daniell's Elements of Meteorology, 8vo . . 2
Davy on Foundations, 8vo
De Cessart's Travaux Hydrauliques, 4to . . . 2
Delabeche's Geological Observer, 8vo . . .
De la Lande's Canaux de Navigation, rojal . . I
De la Rive on Electricity. Vol. I. 8vo . . . 1
Della Condotta dell Acque (Romagnosi), 8vo . 6
De Morgan's Calculus (Library of Useful Knowledge), 8vo
Dempsey's Iron and Brick Bridges, and Iron Roofing, 4to 1 " " $"$ plates, imp.
Directions to Collectors of Land Revenue, 1848, 8vo . 1
Dixon's Mairwarra, 4to 1
Douglas on Naval Gunnery, 8vo . . . 1
Downing's Architecture of Country Houses, 8vo . . 1
Drewry on Suspension Bridges, 8vo . . . 1
Dubuat's IIydraulics, 4to 1
$" \quad$ " 4 to . . . 1
Everest's Measurement of the Meridional Arc of India, 4to 1
" " $"$ plates,
4to

Elliot's Practical Geometry (Oordoo), 8vo
Elmes' Metropolitan Improvements, 4to
Ewbank's Hydraulic Machinery, 8vo .
Fau's Artistic Anatomy, 8vo

$$
" \quad, \quad \text { Atlas, 4to }
$$

Fergusson's Mechanics, 8vo
Lectures on Mechanics, 8vo
Fiumi Laghi e Canali di Milano, super-royal
Forget's Electricity and Animal Physiology, 8ro
Frome's Trigonometrical Surveying, 8vo
Fulton on Canal Nnvigation, 4to
Gauthey's Canaux de Navigation, medium
Geography of Architecture, 8vo
Goodwyn's Memoir on Cast Iron Roofing, 4to
Gothic Ornaments of Lavenham Church, 4to
Graham's Elements of Chemistry, 8vo
Grant's Outlines of Comparative Anatomy, Bro
Greece, Antiquities of, 8 vo
Gregory's Mathematics for Practical Men, 8vo
Gwilt on Arches, 8 vo
" Architectural Criticisms, 8vo
IIagean's Canal de Jonction de la Meuse au Rhin, 4to
Hamilton's East India Gazetteer, ${ }^{8}$ vo plates, royal
" 8po
Hay on Form, 4to
IIenslow's Botany, 8vo
Herschel's Outlines of Astronomy, 8vo Natural Philosophy, fcp 8to
Higging on Cements, 8vo
Ilodgkinson on Cast Iron, yvo
Holtzapfell's Turning and Mechanical Manipulation, 8vo
Hughes on Road Making, 8vo
IIughes's Principles of Geography (Oordoo), 8vo
Humboldt's Cosmos, (vol. 1), 8vo
Hutton's Recreations, 8vo
Indian Register of Medical Science, 8vo
Inman's Report on Ventilation, 8vo
Institution of Civil Engineers, 1844-47, 1849-50, 8vo
Iron Roof of New Houses of Parliament, 4to
Jackson's Military Surveying, 8vo
Jebb's Report on the Pentonville Prison, 1844-46, fcap
Johason's Physical Atlas, imp.
Jones on Annuities (Library of Useful Knowledge), 8vo
Journal of Asiatic Society of Bengal, 8vo
Agricultural Society of India, 87o
Kater and Lardner's Mcchanics, 8vo
Knapp's Chemical Technology, 8vo
Kraft's L'irt de la Charpente, imp.
Lander's Floods in Moray, 8vo .
Lardner's Railway Economy, post 8vo
Leach's Inland Navigation, 8vo
Lecount on Railmays, 8vo .
Lectures (Faraday's) on the Non-Metallic Elemente, fep 8vo
Leroy's Traité de Géométric Descriptive, 4to
Liebig's Letters on Chemistry, 8vo
Agricultural Chemistry, 8vo
Lindleg's Botany, (Library of Useful Knowledge), 8vo
Iondon and its Environs, Topographical and Geological, 1851, 8vo

Loudon's Encyclopædia of Gardening, 8vo . . Vols.
Lyell's Elementary Geology, 8vo 1
" Principles of Geology, 8vo . . . 1
MacCulloch's Commercial Dictionary, 8vo . . 2
Geographical Dictionary, 8vo . . 2
MacNeil's Earthwork Tables, 8vo 1
Mahan's Civil Engineering, 4to . . . 1
Martin's Circle of Mechanical Arts, m. 4to . . 1
Mathematics (Library of Useful Knowledge), 8vo . 2
Mechanic's Magazine, 8षо 10
Miller's Principles of Physics and Meteorology, 8vo . 1
Science of War, 8vo
1
Millington's Mechanical Philosophy, 8vo . . 1
Mitchell's Patent Screw Piles and Moorings, 8vo . . \pm
Moseley's Eugineering and Architecture, 8vo . . il
," Illustrations of Mechanics, 8vo . . . 1
" Mechnnies applied to the Arts, 8vo . . 1
Murray's Encyclopædia of Geography, 8vo . . 2
Mushet on Iron and Steel, royal 8vo . . . 1
Naturalist's Library (Animals), 8vo . . . 13
" (${ }^{2}$ (Birds), 8vo . . . 4
Natural Philosophy (Library of Useful Knowledge), 8vo 4

| Nautical Almanack for $1836-38$, and $1842-46, ~ 8 v o ~ 8 v o ~$ | 4 |
| :--- | :--- | :--- |

Naval Dry Docks of the United States, royal 4to . 1
Navier's Mémoires sur les Ponts Suspendus, 4to . . I
" \quad " plates, oblong 1
Nichol's Architecture of the Heavens, 8vo . . 1
Nicholson's Principles of Architecture, 8vo . . 3
Architectural Dictionary, 4to . . . 2
Notes on Building and Road Making, 8vo . . 1
O'Shaughnessy's Bengal Pharmacoperia, 8vo . . 1
Overmann's Manufacture of Iron, 1850, 8vo . . 1
1851,8vo . . 1
Steel, 8vo . . 1
Mineralogy, fcap 8vo 1
Moulder's and Founder's Guide, fcap 8vo .]
Paley"'s Baptismal Fonts, 8vo
Pambour on the Steam Engine, 8vo . . . 1
Рарers prepared for the use of C. F. College, Roorke,
Parts I. and II., 8vo
2
Paris' Elements of Chemistry, 8vo . . . 1
Parnell's 'Treatise on Roads, 8vo . . . 1
Partington on the Steam Engine, 8vo . . . 1
Pasley's Practical Geometry, 8vo . . . 1
on Lime and Cements, 8vo
on Measures, Weighta, and Money, 8vo . 1
Military Policy, 8vo 1
Perronet sur les Ponts, 4to 1
" " plates, royal . . . 1
Peschel's Elements of Physics, fcap 8vo . . 3
Phillip's Inland Navigation, 8vo
Manual of Metallurgy, post 8vo
Pbillpot's Report on the Canal Navigation of the Canadas, 4to
Plane and Spherical Geometry (Library of Useful Knowledge), 8vo
Plattner on the Blow-Pipe, by Muspratt, 8vo . . 1
Pocock's Finishings, 4to
Practical Geometry (Library of Useful Knowledge), 8vo

Professional Papers of the Royal Engineers, royal 4to $\begin{gathered}\text { Vols. } \\ . \quad 2\end{gathered}$
Professional Survey of Old and New London Bridges, 8vo
Prout on Chemistry and Digestion, 8vo
Pugin's Examples of Gothic Architecture, 4to
Ornaments, 4to
Pugin and Britton's Public Buildings of London, 8vo . and Mackenzie's Specimens of Gothic Architecture at Oxford, 4to
Quarterly Journal of Literature, Science, and Arts, 8 ro
Quekett on the Microscope, 8vo
Raccolta d'Autori delle Acque, 8vo
Recueilde Divers Mémoires, Extraits de la Bibliothèque Impériale des Ponts et Chaussés, demy 4to
Reid's Young Surveyor's Preceptor, 4to
Report on the Boundary between Guntonr and Masulipatam, 1850, 8vo
on the Harbours of Refuge to bc constructed at Dover and Holyhead, fcap
on the Caledonian Canal, feap
on Grand Trigonometrical Sur
Grand Trigonometrical Survey of India, fcap of Nizamut Adalut, of 1842-43, 4to
on Public Instruction, N. W. P., 1845-46 to 1851-52, 8 8o

1850-51, 8vo
Lower Provinces, 184i-46-
on Revenue Adininistration, 1848-49, 4to
Reports of Select Committees:-
On Highways of the Kingdom, feap
Lighthouses, fcap
Metropolitan Improvements, fcap
Railways, fcap
,"Shipwrecks, fcap .
Westminster Bridge and New l'alace, fcap
Revenue Meteorological Statements, N.W.P., 1844-45 to 1849-50, 4to
Review of Public Instruction, Lower Provinces, 1835-51, Part T., by J. Kerr, M.A., 8vo
Roget's Electricity (Library of Useful Knowledge), 8ro on Animal and Vegetable Physiology, 8vo .
Roorkee College of Civil Engineers, Account of, fcap
Sang's Essay on the Solution of Algebraic Equations, 8vo
Selections from Public Correspondence. Part X. 8ro
Semple's Building in Water, 4to
Nettlement Miscellaneous, 1847, 4to
Seven Jamps of Architecture, Ruskin's, 4to
Simms on Levelling, 8vo
" on Mathematical Instruments, 8vo
Sinclair's Planting (Library of Useful Knowledge), 8 vo
Smcaton's Reporta, 4to
, Eddystone Lighthouse, royal
Smith's Professional Popers of the Madras Engineers, demy
, Animal Physiology (Library Useful Knowledge), 8vo
" Italian Irrigation, 8vo
" Mechenic Atleg, imp.
" Mechanic, 8vo
,, School of Arts, 8yo

Smith on Watering Mcadows, 8vo . . . 1
Smyth's Celestial Cycle, 8vo 2
Smyth and 'Thuillier's Manual of Surveying in India, 8, 1
Somerville’s Physical Sciences, 8vo l
Sopwith on Isometrical Drawing, 8vo . . . 1
Standing Orders, D. P. W., fcap 3
Stephens' Book of the Farm, royal 8vo . . . 2
Stephenson on Locomotives, 4to 1
" on Civil Engiacering in North America, 8vo 1
Stevenson on Marine and River Surveying, royal 8vo . 1
Stewart's Planter's Guide, 8vo 1
Stones of Venice, Ruskin's, 4to 3
Strickland Gill and Campbell's Public Works of the United States, America, 8vo

1
Stuart and Revett's Athens, imp. . . . 4
Sturgeon's Lectures on Galvanism, syo . . . I
Switzer's Hydraulics, 1729, 4to 1
Tatham and Smith on Irrigation, 4to . . . 1
'Telford, Sir 'Thomas, Life of, 4to . . . 1 Atlas, imp. . . . 1
Templeton's Workshop Companion, fcap 8vo
'Theory of Equations (Library of Useful Knowledge), 8 yo
Tielke's Field Engineer, 8vo
Transactions of the Bombay Gcographical Society, 8 ro .
Tredgold on Cast Iron, 8vo .
on the Steam-Engine and Steam Navigation, to 2 " " \quad " \quad " on Elementary Principles of Carpentry, 4to
Turnbull's Essay on Cast-iron Beams, 8 vo .
Ure's Dictionary of Arts and Manufactures, 1846, 8vo
., ., ., Supplementary,
1851, 8vo
Vicat on Cements, 8vo
1
Weale's Architectural Drawing Book, 8vo . . . 1 plates, royal . . 1
". Ensamples of Railway-making, post 4to . 1
"Papers on Civil Engincering, 4to . . ;
, Public Works of Great Britain, imp. . . 1
" Theory, Practice, and Architecture of Bridges, nedium 4to

1
$" \quad$ " plates, medium 4to 2
Welster's English Dictionary, 4to . . . 1
Weisbach's Mechanics of Machinery, 8vo . . . 2
Whewell's Astronomy and Physics, 8vo . . . 1
History of the Inductive Sciences, 8vo . 3
., Mechanics, 8vo 1
, Philosophy of Inductive Sciences, 8 vo . . 2
Whitlaw and Stuart's Water Mill, 8vo . . . 1
Weibeking's Traité sur la Construction des Ponts, 4to . 1

Wilmes's Hand-Book of Mapping, 4to . . . 1
Wilson's Ariane Antique, 4to l
Wishaw's Railways of Great Britain and Ireland, imp. . 1
Wood's Principles of Mechanica, 8vo . . . I

List of Books belonging to the Non-Professional Library of the Ganges Canal on the 1 st of April, 1854.

History and Biography.

Affghanistan, Military Operations in, 8vo
Annual Biography and Obituary for 1817 and 1823, 8 ro
Army in Spain under Sir John Moore, 8vo
Athens, its Rise and Fall, by Bulwer, 8vo
Bengal, History of, Marshman's, post 8vo
Biographical History of Ancient and Modern Philosophy, 12mo
Bonaparte, his Sayings and Doings, by A. Vieusseux, 12mo
British Army at Washington and New Orleans, by Gleig, Svo
". Turf, History of the, Whyte's, demy 4to
," Costume, " Planche's, 12mo
" Commerce, " by G. L. Craik, A.M., 12 mo
Hruce, the Traveller, Life of, by Major Head, 12 mo
Bunyan, Life of, Southey's, 8vo
Burton, Sir T. F., Bart., Memoirs of, by his Son, 8vo
Cabinet Portrait Gallery of British Worthies, 12 mo
Carlcton, Captain, Memoirs of, royal 8vo
Caulincourt, Duke of Vicenza, Recollections of, post 8vo
Caston, Life of, $12 m$ m
Christopher Columbus, Life and Voyages of, W. Irving's, 8 vo
Charch, Fistory of the (Library of Usefal Knowledge), 8 vo
Civilization in Earope, History of, Guizot's, 8vo
Civil Wars of Rome, 12 mo
Clive, Lord, Life of, by Gleig, 8vo
Coleman, Memorials of, Peake's, demy 4to .
Condé, Life of, Lord Mahon's, 8vo
Cowper, " 12 mo
Cronwell, ,. Southey's, 8vo
Protectorate of, Vanghan's, demy 4to
D'Arblay, Madame, Diary of, 8ro
Dibdin, Thomnas, Reminiscences of, 8 vo .
Drake, Life of, 8ıo
Edgeworth, the Abbe, Memoirs of, 8vo
IR. L., Memoing of, 8vo
England, History of, Hume and Smollett's (1831), 8vo .
"ledge), $\begin{gathered}\text { soo } \\ \text { Vaughan (Library of Usefal Know- } \\ 2\end{gathered}$
France, Ilistory of (Library of Useful Knowledge), 8vo - 1 by Gifford, 4to
F'ranklin, Benjamin, Autobiography of, by J. Sparkea, Bivo
French Revolution, History of, Carlyle's, 8vo
Gcorge the Second, Memoirs of the Reign of, by Lord Hervey, 8то 2
Gibraltar, Siege of, Drinkwater's, 8vo $\frac{1}{2}$
Girondists, History of, Lamartine, 8vo 3
Goldsmith, Oliver, Life of, by W. Irving, 8vo 1Grammont, Count, Memoirs of, 8vo3
Greece, History of (Library of Useful Knowledge), 8 ro 1
Gresham, Sir T., Life of, Macfarlane's, 12 mo む
Haydn's Dictionary of Dates, 8vo 1
Hindostan, History of, Dow's, 8vo 3
Historical Essays, by Lord Mahon, 8vo 1
Parallels, by A. Malkin, M.A., 12 mo I
Impey, Sir Elijah, Memoirs of, by his Son, 8vo 1
India, History of, Elphinstone's, post 4to 2
Jefferson, President, Memoirs of, demy 4to. I
Johnson, Doctor S., Life of, Boswell's, 8vo 4
Josephus, Whiston's, 8vo 2
Lafarge, Madame, Memoirs of, 8vo 1
Literature of England, History of, 12mo 3
ledge), 8ro. 1
Lives of the Early Italian Painters, 12 mo 1
, Eminent Persons (Lib. of Useful Knowledge), 8voLondon, History of, Mackay's, 8vo .
Louis Pbilippe, Life and Times of, Wright's, 8vo- 1
" XVIII., Life of, written by Himself, 8 vo 2
" XIV. and the Court of France, by Miss Pardoe, 8vo 3
Mahomet, Life of, by W. Irving, 8vo 1
Mammalia, History of the, $12 m o$
Memoirs of a Working Man, 12 mo 3
Monkeys, History of, 12 mo $\frac{1}{2}$
Mozart, Life of, by Holmes, 8vo 1
Munro, Sir J., Life of, 8vo ,
Napoleon's Expedition to Russia, by Count Segur, Bvo 2
Narrative of the Insurrection at Beaares, 4to - 1
Nelson,"Life of, by Southey, 12 mo 1
Ney, Marshal, Memoirs of, 8vo 1
Northern Campaigns of 1812-13, 8vo 3
Oriental Christian Biography, 8vo 3
Painting, IIistory of, Wornum's, 12 mo 1
Paris and its Historical Scenes, 12mo1
Peter the Great, Life of, 12 mo
t
t
Philip Musgrnve, or Missionary Life in Canada, 8vo
Philip Musgrnve, or Missionary Life in Canada, 8vo
1
1
Poland, History of (Cabinet Cyclopredia), 8vo
Pompeii, ita Destruction and Re-dincovery, 12 mo
ILuspia, History of (Cabinet Cyclopiedia), 8vo 3 2
Sale's Brigade in Affighanisten, by Gleig, 8 vo $\frac{1}{1}$
Scinde, Military Operations in, 8vo
Selections from the Records of the Government of India,I
Skinner, Colonel, C.LB., Memoirs of, 8vo .
St. Helena, History of, Brooke's, 8 vo

Novels and Romances.

Alhambra, by Irving, 8vo
Alice, or the Mysteries, by Bulwer, 8vo
Alroy, by Disraeli, 8vo
Amber Witch, Meinhold's, translated by Lady Duff Gordon,8vo

Amelia, by Fielding, 8vo 2
Arabian Tales and Anecdotes, by Lane, 12 mo . .
Arlington, by Leister, 8vo
Bar Sinister, Bro
Bible in Spain, Borrow's, 8 vo
Billow and Rock, by Miss Martineau, 12mo
Black Watch, Ticken's, 8vo
Bondman (I,ibrary of Romance), 8vo
Bracebridge IIall, by lrving, Avo
870
Bravo, Cooper's, 8vo"
Camp of Refuge, by Macfarlane, J2mo
Canterbury Tales, Chaucer's, by Saunders, 12mo
" " Lecs, 8vo
Cid, Dennis's, 12 mo
Conquest of Granada, by Irving, Bvo

$$
" \quad \text { " } \quad 8 \text { vo }
$$

Clarissa Harlowe, Richardson's, 4to
Charlotte Corday, by Miss Mendrick, Bvo
Collection of Tales (Library of Romance), svo .
Count Julian, by Simms, 16mo
Crock of Gold, Tupper's, 8vo
Deer Slayer, Cooper's, 8vo
Don Quixote, limo
Dutch in the Mcdway, 12mo
Einigrants of Ahadarra, Carleton's, svo
Ernest Maltravers, Bulwer's, Bro
Estelle, 12mo
Every-Dny Occurrences, 8vo
Fall of the Jesuits, 8vo
Fanny Campbell, by Lieut. Murray, 16 mo .
Feats on the Fiord, by Miss Martineau, 12mo
French in Algicrs, translated by Lady Duff Gordon, fivo . $\frac{1}{2}$
Ghost IIunter (Library of Romance), 8vo
Grace Seymour, Rvo
Gipsies of Spain, Borrow's,

Harold, Bulwer's, 8vo Vols:
Heidenmauer, Cooper's, Bvo 2
Hermit Abroad, svo 4
Husband Hunting, 8vo :s
Jack Brag, ly Hook, 8vo 1

John Marston Hall, by James, 8vo . . . 3
Joseph Andrews, Fielding's, 12mo 1
Kickleburys on the Rhine, by Thackeray, 8vo . . I
Knickerbocker's New York, by W. Irving, 8vo . . 2
" " " Nvo . . 1
Last of the Barons, svo 3
" \quad " 8 vo 3
Legend of Reading Abbey, by Nacfarlane, 12mo . \ddagger
Livonian Tales, \& 8o
Love and Pride, 8vo 3
Master Humphrey's Clock, by Dickens, 8 vo
Michael Armstrong, by Mrs. Trollope, 8vo
Miser, by Carleton, 8vo
Mysterious Marriage, 8vo 4
Northword, or the Friendllip of a Jesuit, 8vo . . 1
Our Street, by Thackeray, 8vo I
Pamela, Richardson's, demy 4to 1
Paris Sketch Book, Thackeray's, 8vo . . .
Pellam, Bulwer's, 8 ro 1
Pendennis, by Thackeray, 8vo 2
People I have met, Willis's, 8vo 1
Peregrine Pulteney, Kaye's, 8vo . . . ;'
Peter Simple, Marryatt's, 8vo 3
Ranthorpe, 8vo I
Refugec in America, by Mrs. Trollope, 8vo . . is
Romance of the Forest, by Mrs. Radeliffe, 16 mo . 1
Romance of Travel in the East, by Macfarlane, 12mo 1
Rory O'More, by S. Lover, 8vo
Siege of Vienna (Library of Romance), 8vo . . 1
Sir Charles Grandison, Richardson's, demy to . . 1
Sir Launcelot Greaves, Smollett's, 12mo . . 1
Sketch Book, W. Irving's, 8vo 1
" " . . .
Sketches of Irish Character, by Mrs. Hall, 8vo . . 1
St. Ronan's Well, Sir Walter Scott, 8vo . . 3
Tales from Shakspeare, 12mo 1
Tales of an American Landlord, 8vo
Tales of a Traveller, W. Irving, 8vo
" " 8vo
" "~~No
Tales of the West, sro2

Thaddeus of Warsaw, Miss Porter's, 16 mo,
'Traditions of Western Germany, Knox's, 8vo . . 3
Two Admirals, Cooper, 8vo 2
Two friends, by the Countess of Blessington, Avo . 3
Victim of the Jesuits, Bvo ;
Waldemar (Library of Romance), 8 vo . . . 1
Wryside Cross, by Captain Milman, 8vo . . \ddagger
White Wolf, by Paul Ferroll, 16 mo . . . 1
Woodstock, Scott's, 8vo 3
Zanoni, Bulwer's, 8vo 2
Zenon, Cobbold's, 8vo 3

Poetry and Dramatic Works.

British Drama, post 4to 2
Chaucer's Works, 12 mo
Cowper's Poems, 12 mo
English Poetry, Campbell's Eissay on, 8vo
Poets, Hazlitt's, 8vo
Fudge Family, Moore's, 12 mo
Godifrey of Bulloigne, by Tasso, done into English by Fairfax, 12mo
Goldsmith, Poems and Plays of, 8vo
and Letters of, 8vo . 1
Hudibras, and other Works of S. Butler, 12mo . .
Johnson's Poets, 8vo
75
No. 1 to 6. Lives of English Poets. 7 and 8. Works of Cowley. 9. Works of Cowley and Denham.

10 to 12 . Works of Milton.
13 and $14 . \quad, \quad$ Butler.
15. Works of Rochester, Roscommon, and Otway.
16. " Waller.
17. " Pomfret, Dorsct, and Walsh.

18 to 24. Works of Dryden.
25. Works of Smith, Duke, and King.
26. " King, Spratt, and Halifax.
47. " Parnell.
28. ., Garth and Rowe.
29. " Rowe.
30. " Addison.
31. .. Hughes.
32. .. Sheffield, Buckingham, and Prior.
33., Prior.
34. " Prior and Congreve.
35. ,, Blackmore and Fenton.

36 and 37. Works of Gay.
38. Works of Granville and Lansdowne.
39. " Yalden, Tickell, and Hammond.
40. " Somerville.
41. ", Somerville and Savage.

42 and 43. Works of Swift.
44. Works of Swift and Broome.

45 to 51 . Works of Pope.
52 and 53. , Pitt.
54. Works of Thomson.
55. " Thomson and Watts.
56. , Watts.
55. ", Phillips and West.
58. , Collins and Dyer.
59. " Shenstone.

60 to 62. Works of Young.
63. Works of Mallet and Akenside.
64. " Akenside, Gray, and Littleton.
65. " Moore and Cawthorne.
66. ", Churchill.
67. " Churchill and Falconer.
68. " Lloyd.
69. " Cunningham and Grcenc.
70. " Goldsmith and Whitehead.
71. " Armstrong and Langhorne.
72. " Johnson and W. Whitehead.

Johnson's Poets-continued. Vols.

No. 73. Works of W. Whitehead and Jenyns. 74 and 75. Index.
May Fair, 8vo
Molière, Racine, and the French Classical Drama, by Madame
Blaze de Bury, 12 mo
New Timon, 8vo 1
Pope's Poetical Works, 8vo l
Prose and Verse, by A. H. E. Boileau, 8vo . . 1
Spencer and his Poetry, l2mo 1
Thomson's Seasons, 12mo. 1

Vorages and Travels.

Adventures of Captain Bonneville, 8vo . . . 1
. $"$ on the Road to Paris in 1814-15, 8vo . . t
Africa, Scenes in, Marryatt's, 8vo . . . 2
" Southern, Travels in Interior of, Alexander's, 8vo 2
,. Travels in the Interior of, Parke's, 12 mo . 1
" Western, Travels in Interior of, Duncan's, post
8 vo
2
Amazon, Voyage up the Rhine, by Edwards, 8 vo . $\frac{1}{2}$
America, Mrs. Butler’s Journey in, 8vo . . . 2
Arabia, Travels in, Captain Wellstead's, royal 8ro . 2
Arctic Regions, Chronological History of Voyages to, 8vo 1
Australia, Bush Life in, Haygarth's, 870 . . .]

Baltic, Letter from the, by a Lady, 8vo . . . it
Belgium and the Rhine, Ramsay's, 8vo . . . 1
Biscay, Six Years in, Bacon's, 8vo . . . 1
Bombay, Journey to, by Miss E. Roberts, 8vo . . 1
Borneo, Keppel's, 8vo 2
Cabool, Burnes's, 8yo 1
Canada, Backwoods of, Letter from the Wife of an Emi-
grant Officer, 12 mo 1
Cairo, Petra, and Damascus in 18:39, Kinnear's, 8vo . I
Chinn, Medhurst's, 8 vo J
China, Service in, Cunningham's, 8vo . . . 2
Chinese and Sketches of China, Davies, 12mo . . 2
Columbus, Companions of, "̈dventures of, 8vo . . 1
Constantinople and Teheran, by J. B. Fraser, 8vo . 2
Cornhill to Grand Cairo, Journey from, Thackeray's, 8 vo l
Dumascus and Palmyra, Adldison's, 8vo . . . 2
Egypt and Gambia, by Scott, 8vo . . . !
Egyptians, Modern, Low's, 12mo I
El Dorado, hy B. Taylor, 8vo ¿
England, Observations on, Peechois, 8vo . . . 1

" Von Raumer's, 8vo 2
Euglish woman in Egypt, by Mrs. Poole, 12 mo . . 1
Florence, A Ride on IIorseback to, 8vo . . . 2
Germany, Strong's, 8vo '2
German Life, Sketches of, 8vo 1
Grcenland, Voyage to, Graah's, 8vo . . . 1
India, Iron in Upper, Archer's, 8vo . . . 2
" Overland Journey to, Skinner's, 8vo . . 2

$\begin{array}{ccc} & & \\ \text { nal in, Bishop Heber's, 8vo } \\ \text { 8vo } & \text { Vols. } \\ 2\end{array}$	Book-keeping, Kelly's, 8vo Book of Table Talk, 12mo
ds Classical and Sacred, by Lord Nugent, 12mo	British Husbandry (Library of Useful Knowledge), 8vo
Letters from the South, by T. Campbell, 8vo	Byron's Conversations, by Lady Blessington, 8vo
Lima to Peru, by Smith and Lowes, 8vo	Camp and Barrack-room, 8vo
Lybian Desert, Adventures in, by Bayle St. John, 8	Capital and Labour, 12mo
Lycia, Travels in, by Spratt and Forbes, 8vo	Cattle, Management of (Library of Useful Knowledge), 8vo
Madras, Letters from, by a Lady, 8vo	
diterranean, Shores of the, Shroeder's, 880 . . 2	Chase, Turf and Road, 8vo
Mexico, Travels and Adventures in, Ruxton's,	Dictionary of Grecian and Roman Antiquities, Smith's,
innay Soter, Voyage up the, Featherstonhaugh's, royal 8vo	
Morocco and the Moors, by J. D. Hay,	Dog, The (Library of Useful Knowledge), 8vo
Nemesis, The, in China, 8vo	Domestic Scenes in Scotland, Smith's, 8vo
New South Wales, by Mrs. Meredith, 12mo . . $\frac{1}{2}$	East India Register for 1837, 8vo
orth American Indians, Catlin's, royal 8vo . . 2	Edinburgh Review, 8vo
Northern Europe, Tour through, Wraxall's,	Elephant, Horse, and Dor-the Three Friends of Man,
Norway, A Visit to the Western Coast of, Wittich's, 12 mo	
Notes of a Wanderer, Cumming's, 12mo . . 2	England and the English, Bulwer's, 8vo
Omoo, Adventures in the South Seas, Melville's, 8vo	Etonian, The, 8vo
8vo - 1	Fencing, Rowland on, 8vo
Pampas, Rough Journey across the, Sir F. Head's, 8vo . $\frac{1}{2}$	Field, Garden, and Woodlands, by Miss Pratt, 12mo
Paraguay, Letters on, Robertson's, 8vo . . . 2	Flowers and their Associations, by Miss Pratt, 12mo
Pekin, Residence at, Father Ripa's, 8vo . . . $\frac{1}{2}$	Food of Man, by Doctor Lancaster, 12ıno
Persia, Journey into, Faucoigne's, 8vo 1	Geography of America and the West Indies (Library of Useful Knowledge), 8vo
Portugal and Gallicia, by Lord Carnarvon,	Physical, Curiosities of, Wittich's, 12 mo
airies, Tour on the, W. Irving's, 8vo	Physical, of the Holy Land, Kitto's, 12mo
renees, 'Ihe, by Mrs. Fllis, 8vo	Pinkerton's, royal 4to
ambles by Rivers, by James Thorpe, 12mo . . 2	Hindostanee Grammar, Shakspeare, 4to
Retrospect of Western Travel, Miss Martincau's, 8vo . 3	Horse, The (Library of Useful Knowledge), 8vo
Sarawak, its Inhabitants and Productions, Low's, 8vo . 1	Ider in France, ly Lady Blessington, post 8vo.
Scotland and the Scotch, Sinclair's, 8vo	ly, by Lady Blessington, post 8vo
Settlers and Convicts, or Sixteen Years in the Backwoods of N. S. Wales, 12 mo	Insect Architecture, 12mo Index to Map of India, 8vo
Seward, Sir Edward, Narrative of, Miss Porter's, 8vo . 3	Indian Gardener, Speed's, 8vo
Sierra Leone, Letters from, by a Lady, 8vo . . 1	India, State and Prospects of, by E. Thornton, 8vo
South America, Adventures on the Western Coast of, in	India, The Manners and Customs of, Acland's, 8vo
outh America and the P	Instinct, Brougham, Dialog
Spain, Gatherings from, by R. Ford, 8vo	Italy, Popular Cu toms and R
Spain, A Year in, by a Young Ameri	12 mo
St. Petersburg and Moscow, Bourke's, post 8vo	Illustrated London News : Vols. xi. to xxi., royal
Switzerland, Excursions in, Cooper's, 8vo	Lectures on Literature, by Schlegel, 8vo
Travels in the East, by Irby and Mangles,	Letters on the Improvement of the Mind, 8vo
Turkey, Travels in, Madden's, 8vo	Letters to Brother John, 8vo
Two Years in the American Navy, 8vo . . 2	Lost Senses, The, 12mo
Typee, or the Marquesas Islanders, Melville's, 8 vo	Manufactures of Great Britain, by G. Dodd, 12mo
	Men, Women, and Books, by Leigh Hunt, 8vo
Voynge of a Naturalist Round the World, by Darwin, 8vo	Meerut Universal Magazine, 8vo
Voyage Round the World, by Ruschenberger, 8vo . . 2	Mind among the Spindles, Selection from the "Lowel
West Indies, Journal of a Resident in, by Monk Lewis, 8vo $\frac{1}{2}$	Offering," 12mo Missions in North America, 8vo
Cal and Miscellaneous.	Natural History, Observations on, Jenyns's, 8vo Newcnstle's (Duke of) Horsemanship, imp.
Art Union Catalogue of the Great Exhibit	Northcote, Conversations of, Hazlitt's, 8vo
Art Union Journal, vols. 10 to 13, 4to . . . 4	North Pole, Essays on the Possibility of Approaching, by
Bacon's Writings and Philosophy, by Craik, 12mo	
Bengal Directory, 1836, 8vo	Oregon Territory, I'he, by the Rev. G. C. Nicolay, 12mo
Bird Architecture, 12mo	Origin of Laws, from the French of President Goquet, 8vo
	Penay Magazine for 1832, 1833, and 1834, fcap

Book-keeping, Kelly's, 8vo 1
Book of Table Talk, 12mo 1
British Husbandry (Library of Useful Knowledge), 8vo . 3
Blessington, 8 vo
Capital and Labour, 12no \ddagger
Cattle, Management of (Library of Useful Knowledge), 8vo 1
Chase, Turf and Road, 8vo ." . ". . . . i
Dictionary of Grecian and Roman Antiquities, Smith's,
Dog, The (Library of Useful Knowledge), 8vo . . 1
Domestic Scenes in Scotland, Smith's, 8vo . . 1
East India Register for 1837, 8vo 1
Eimburgh Review, 8vo . 11 12mo

1
England and the English, Bulwer's, 8vo . . . 2
Etonian, The, 8vo 2
Fencing, Rowland on, 8vo I
Field, Garden, and Woodlands, by Miss Pratt, 12mo . $\frac{1}{2}$
Food of Man, by Doctor Lancaster, 12ıno . . $\frac{2}{2}$
Geography of America and the West Indies (Library of
" Physical, Curiosities of, Wittich's, 12mo . $\frac{1}{2}$
" Physical, of the Holy Land, Kitto's, 12mo . 1
" Pinkerton's, royal 4to 3
Hindostanee Grammar, Shakspeare, 4to . . 1
Horse, The (Library of Useful Knowledge), 8vo . . I
Ider in France, by Lady Blessington, post 8vo . . 2
Insect Architecture, 12mo 1
Index to Map of India, 8vo 1
Indian Gardener, Speed's, 8vo 1
India, State and Prospects of, by E. Thornton, 8vo . 1
Industry of the Rhine, Agriculture and Manufactures, 12 mo I
Instinct, Broughain, Dialogues on, 12mo
Italy, Popular Cu toms and Recollections of, by Macfarlane, 12mo
$\frac{1}{2}$
Instrated London News: Vols. xi, to xxi., royal . . 11
Letters on the Improvement of the Mind, 8vo . . 1
Letters to Brotber John, 8vo 1
Lost Senses, The, 12 mo I
Manufactures of Great Britain, by G. Dodd, 12mo . 3
Men, Women, and Books, by Leigh Hunt, 8vo . . 2
Mind among the Spindles, Selection from the "Lowel Offering," 12 mo
$\frac{1}{3}$
Missions in North America, 8vo 2
Natural History, Observations on, Jeuyns's, 8vo . 1
Newcastle's (Duke of) Horsemanship, imp. . . 1
North Pole, Essays on the Possibility of Approaching, by Col. Beaufoy, 8vo
,
Penny Magazine for 1832,1833 , and 1834 , fcap . . 3

APPENDIX N.

Valuation Statements of Property at Cafnpoor falling within the Canal Boundaries.

Survey Report of a Committee appointed by orders of the Brigadier Commanding the Station of Cawnpoor to Survey and Value certain Buildings and Property which come in the line required by the Ganges Canal through the Suddur Bazar and Cantonment.-Cawnpoor, 27th February, 1851.

> FIRST SECTION.
> President-Major C. Troup.
> Members-Captain G. R. Siddons, Captain T. Riddell, Lieutenant R. Wnoughton, Srud Nasir Alli Kran, Deputy Magistrate.

Names of and Valuation by Owners.	Description.
1. Ghoolameekhan (Valuation, 208 rs .12 a. 9 p .)	15 rooms; average dimensions about $14 \frac{1}{4}$ hy 8 feet; walls of 8 rooms of kutcha pukka masonry, remainder of mud; height of walls about 13 feet; roofs of 14 kutcha, and 1 of pukka, bad, and remainder in pretty good order.
2. Gungadeen $-\cdots \quad \ldots$ (Valuation, 200 rs .)	7 rooms; average 11^{\prime} by $8^{\prime} ; 5$ kutcha roofs on wall 10^{\prime} high, 2 tile roofs on walls $8 \frac{1}{2}{ }^{\prime}$ high ; walls of mud, front wall on posts.
3. Sewa Ram (Valuation, 200 re.)	5 rooms ; average $9{ }^{\prime}{ }^{\prime}$ by $8^{\prime} ; 4$ kutcha roofs on walls of mud 10^{\prime} high, 1 roof of tiles; front wall of kutcha pukka masonry, in good order.
4. Muddun Mohun (Valuation, 550 rs.)	4 rooms; average $13 \frac{1}{2}$ by $91^{\prime \prime} ; 2$ roofs kutcha on mud walls, and 2 tile roofs ditto ; 2 tiled sheds in rear of rooms.
5. Deoke Nundun (Valuation, 1,200 is.)	12 rooms; average $19 \frac{1}{\prime}^{\prime}$ by $7^{\prime} ; 4$ kutcha roofs on mud walls, 1 of thatch and the rest of tile.
6. Santoo (Valuation, 136 rs.)	9 rooms; average $12 \frac{1}{2}^{\prime}$ by $7^{\prime} ; 5$ kutcha roofs, 4 tiled; walls of mud; 1 kutcha pukka well 3 feet diameter.

Names of and Valuation by Owners.	Description.	Remarks by the Committee.
7. Boodhoo (Valuation, ${ }^{5} 00$ rs.)	16 ronms; average $141_{2}^{\prime \prime}$ by $7^{\prime} ; 9$ roofs of thatch, and the rest of tiles, on mud walls, in tolerable order, about 9^{\prime} high.	Owner present; 1,624 superficial fett, at 7 rs . per 100, equal to 113 rs .10 a .10 p. ; labour, at 2 rs. 4 a., 36 rs. 8 a. 7 p.
8. Goolall (Valuation, 175 rs.)	10 rooms; average 19^{\prime} by $9^{\prime} ; 6$ kutcha roofs, rest of tiles; mud walls in good order.	Owner present; 1,530 superficial feet, at 7 rs . per 100, equal to 107 rs. 1 a. 7 p.; labour, at $2 r s .8$ a, $38 r s .4 a$.
9. Jemadoss (Valuation, 941 rs .)	46 rooms ; average $15 \frac{1}{2}^{4}$ by $7^{\prime} ; 34$ kutcha roofs, and 12 of tiles; walls of mud.	Owner present ; 4,991 superficial feet, at 6 rs. per 100 , equal to $299 \mathrm{rs}$.7 a. 3 p.; labour, at $2 r s$. , $99 \mathrm{rs}$.14 a. 9 p.
10. Sadoo ... (Viluation, 227 rs.)	7 rooms; about 12^{\prime} by $6 \frac{1^{\prime}}{} ; 6$ roofs kutcha, 1 tiled; 2 rooms are 2 stories high, on mud walls.	Owner not present; 637 superficial feet, at 7 rs. $8 a$. per 100, equal to 47 rs ., and a well and upper story at back, 13 rs ., equal to 60 rs ; labour, at 2 rs .8 a., 15 rs .14 a.
11. Dunkee (Valuation, 2,000 rs.)	17 rooms; average $151^{\prime \prime}$ by $63^{\prime \prime} ; 1$ roof tiled, and rest mud, on mud walls.	Owner present; 1,712 superficial feet, at 12 rs . per 100 , equal to 250 rs .; labour, at $3 \mathrm{rs} ., 51 \mathrm{rs} .4 a$.
12. Munsa Ramı (Valuation, 300 rs.)	9 rooms; about 16^{\prime} by 7^{\prime}; roofs all kutcha on mud walls.	1,008 superficial feet, at 7 r s . per 100 , equal to 70 rs .8 a ; labour, at 2 rs .8 a., 25 rs .
13. Bheeka (Valuation, 110 rs .)	3 rooms; about $12 \frac{1}{2}^{\prime}$ by 6^{\prime}; roofs kutcha, 1 fallen in; walls mud.	225 superficial feet, at 6 rs . per 100 , equal to 13 rs .8 a.; labour, at 2 rs ., 4 rs .8 a .; a small portion of the house only taken.
14. Nunha... (Valuation, $50 r 8$. .	3 rooms; average 7^{\prime} by 5^{\prime}; roofs mud on mud walls.	105 superficial feet, at 7 rs . per 100 , equal to 7 rs .5 a .7 p .; labour, at 2 rs. 8 a., 2 rs. 5 a.; very small portion only takeu.
15. Sewa (Valuation, 180 rs.)	2 rooms; about 12^{\prime} by $6 \frac{1}{4}$; roofs mud, thatch; chopper attached ; walls of mud, old.	225 superficial feet, at 8 rs . per 100 , equal to 18 rs . ; labour, at 2 rs .8 a ., 5 rs .10 a .; a small part of the house only taken.
16. Pursothom and Davedeen (Valuation, 800 rs .)	15 rooms; average $15 \frac{1}{2}^{\prime}$ by $7^{\prime} ; 7$ roofs kutcha, and 8 tiled walls of mud, not in good order.	$1,627 \frac{1}{2}$ superficial feet, at $6 \pi s .8 a$. per 100, equal to 105 rs .12 a .; labour, at 2 rs., 32 rs. 8 a. 9 p.
17. Goolah... (Valuation, 50 rs .)	7 rooms; about $16 \frac{1^{\prime}}{}{ }^{\prime}$ by $8 \frac{1^{\prime}}{}{ }^{\prime} ; 4$ roofs kutcha, 3 tiled; walls of mud, not in good order.	$981 \frac{3}{4}$ superficial feet, at 5 rs .8 a. per 100, equal to 53 rs .15 a ; labour, at 2 rs ., 19 rs .10 a.
18. Jorawur (Valuation, 400 rs .)	13 rooms; about $12 \frac{1}{2}^{\prime}$ by $6 \frac{1^{\prime}}{2} ; 5$ roofs kutcha, and rest tiled; walls mud, and not in good order.	1,056 superficial feet, at 5 rs . per 100 , equal to 73 rs . 15 a .; labour, at 2 rs .8 a., 26 rs .6 a.
19. Nuthoo (Valuation, 105 rs.)	3 rooms ; about $4 \frac{1}{2}{ }^{\prime}$ by $7 \frac{1}{2}{ }^{\prime}$...	326 superficial feet, at 6 rs . 8 a . per 100 , equal to 21 rs .3 a.; labour, at 2 rs .8 a., 8 rs .2 a.
$\begin{gathered} \text { 20. Byjoo } \ldots \text {... } . . \\ \text { (Valuation, } 65 \mathrm{rs} \text {.) } \end{gathered}$	5 rooms; about 11^{\prime} by 8^{\prime}; roofs kutcha, and walls mud.	440 superficial feet, at 6 rs . per 100 , equal to $26 r s .6$ a.; labour, at 2 rs .8 a., 11 rs.
21. Kulean (Valuation, 65 rs.)	4 rooms; average 22^{\prime} by 64^{\prime}; 1 roof kutcha, 3 tiles; walls mud.	572 superficial feet, at 5 rs . per 100 , equal to 28 rs .9 a .7 p ; labour, at $1 \mathrm{r} .8 \mathrm{a} ., 8 \mathrm{rs} .8 \mathrm{a}$.
22. Kashee Doss (Valuation, .)	17 rooms; about 10^{\prime} by 7'; 15 roofs kutcha, and 2 tiled; walls of mud; foundations of 1 wall kutcha pukka, in tolerable order.	1,190 superficial feet, at 9 rs . per 100 , equal to 107 rs. 1 a. 7 p ; ; labour, at 3 rs., 35 rs .11 a. 2 p . ; owner absent.
23. Pertab... (Valuation, 135 rs.)	5 rooms; average 113^{\prime} by $6 \frac{z^{\prime}}{}$; 3 roofs kutcha, and 2 tiled; walls of mud, not in good order.	373 superficial feet, at 5 rs . per 100, equal to 18 rs .10 a .6 p .; labour, at $1 r .8$ a., 5 rs. 8 a.

Names of and Valuation by Owners.	Deacription.	Remarks by the Committee.
24. Chinta... (Valuation, 150 rs .)	4 rooms; about 13^{\prime} by $8^{\prime} ; 2$ rooms of 2 stories; 1 roof kutcha and 3 tiled; walls of mud.	520 superficial feet, at 5 rs . per 100, equal to 26 rs .1 a.; labour, at 2 rs ., 10 rs .6 a. 4 p.
25. Rambux (Valuation, $10 r s$.)	1 room; 18^{\prime} by $7{ }^{\text {² }}$; roof tiled; walls mud...	1391 $\frac{1}{2}$ superficial feet, at 5 rs . per 100 , equal to 6 rs .15 a .; labour, at 1 r .8 a ., 2 rs .; owner absent.
$\begin{aligned} & \text { 26. Dullee } . . . \quad . . . \\ & \text { (Valuation, } 60 r s \text {.) } \end{aligned}$	3 rooms; $10 \frac{3^{\prime}}{}$ by $6 \frac{1^{\prime}}{2} ; 1$ roof mud, and 2 of tiles; walls mud, not in good order.	209 superficial feet, at 5 rs . per 100 , equal to $10 \mathrm{rs}$.7 a .2 p .; labour, at $1 r .8$ a., 3 rs. $2 a$.
27. Govind (Valuation, 60 rs .)	3 rooms; $10 \frac{1^{\prime}}{}{ }^{\prime}$ by $5^{\prime} ; 2$ roofs kutcha, and 1 tiled; also a tiled shed; walls mud.	630 superficial feet, at 5 rs . per 100 , equal to 31 rs .8 a ; labour, at 2 rs ., 12 rs .9 a. 7 p .
28. Doorjun (Valuation, $60 r s$.	3 rooms; 13^{\prime} by $7^{\prime} ; 1$ room 2 stories, 4 roofs tiled, and 1 mud, dilapidated; walls mud.	455 superficial feet, at 5 rs . per 100 , equal to 22 rs .12 a . ; labour, at 2 rs ., 9 rs .1 a .7 p.
$\begin{aligned} & \text { 29. Khoodabux } \ldots \\ & \text { (Valuation, } 80 \text { rs.) } \end{aligned}$	3 rooms; 14^{\prime} by $7 \frac{1^{\prime}}{}{ }^{\prime}$; 2 mud roofs, and 1 tiled; mud walls, in bad order.	315 superficial feet, at 5 rs . per 100, equal to 15 rs . 12 a. ; labour, at $1 r .8$ a., $4 r s .12 a$.
30. Deena ... (Valuation, 60 rs .)	2 rooms; $21 \frac{1_{2}^{\prime}}{}$ by $6 \frac{1}{2} ; 1$ kutcha and 1 tiled roof; mud walls, not in good order.	$279 \frac{1}{2}$ superficial feet, at 6 rs . per 100 , equal to 16 rs .10 a .9 p .; labour, at 2 rs ., 5 rs .9 a.; a portion of house.
$\begin{aligned} & \text { 31. Subsook } \quad \ldots \\ & \text { (Valuation, } 50 \mathrm{rs.} \text {) } \end{aligned}$	2 rooms; $10 \frac{1}{2}^{\prime}$ by 6^{\prime}; roofs kutcha; walls of mud.	126 superficial feet, at 7 rs . per 100, equal to 8 rs .13 a .; labour, at 2 rs .8 a ., ; portion of house.
32. Narain Doss (Valuation, $412 r s$.)	3 rooms ; 12' by $\mathbf{7}^{\prime}$; in bad order	Owner not present; 250 superficial feet, at 5 rs ., 12 rs .8 a.; in ruins; part at rear occupied, sheds.

C. W. Hotchinson, Lieutenant, Executive Engineer, 6th Division, Ganges Canal.
(Signed) T. Asmurniam, Brigadier, Commanding the Station.
$\left.\begin{array}{ll}\text { (Signed) } & \text { C. Troup, Major, President. } \\ \text { (Signed) } & \text { T. Riddell, Captain, } \\ \text { (Signed) } & \text { G. R. Siddons, Captain, } \\ \text { (Signed) } & \text { R. Wroughton, Lieut., }\end{array}\right\}$ Members.

Attending the Committee-

(Signed) John Eliot, Lieutenant, Temporary Assistant, 6th Division, Ganges Canal.
(Signed) Geo. Sim, Licutenant, Officiating Executive Engineer, 7th Division, Public Works.
(Sigued) Nasir Ally Khan.

Surfey Report of a Committee assembled by order of the Brigadier Commanding the Station of Cawnpoor to Survey and Value certain Buildings and Property which come in the line required for the Ganges Canal throngh the Suddur Bazar and Cantonments.-Cawnpoor, 4th March, 1851.

SECOND SECTION.

President-Major C. Trovp.

Members-Captain G. R. Siddons, Captain T. Riddell, Lieutenant R. Wrougeton, Syud Nasir Alli Khan, Deputy Mayistrate.

Names of and Valuation by Owners.	Description.
1. Unmeersing (Valuation, $3,000 \mathrm{rs}$.)	43 rooms; average $10^{\prime} 3^{\prime \prime}$ by $8 \frac{1^{\prime}}{}$; 33 rooms of kutcha roofs, the rest of tile, on walls 111_{2}^{\prime} high; 1 wall of 13 rooms, and 2 of 2 , of kutcha pukka masonry, and of the rest of mud, in fair order; 1 buttress on the side of the tank of kutcha pukka masonry, 5^{\prime} by 9^{\prime} by 55^{\prime}.
2. Dhunee (Valuation, ${ }_{\mathbf{1}} 150 \mathrm{rs} .{ }^{\text {. }}$	8 rooms; average 15^{\prime} by 61^{\prime}; 5 roofs of kutcha, the rest of tile on mud; walls $9 \mathbf{x}^{\prime}$ high, in fair order; 1 shed with tile roof.
3. Oodyt ... (Valuation, 75 rs .)	5 rooms; average 15^{\prime} by $7^{\prime} ; 3$ roofs of kutcha (1 in ruins), and the rest tiles, on mud walls $10 \frac{1}{2}{ }^{\prime}$ bigh, in bad order.
$\left.\begin{array}{c}\text { 4. Doorjun } \\ \text { (Valuation, } \\ 50 \\ \text { rs.) }\end{array}\right)$	4 rooms; average 12^{\prime} by $7 \frac{1}{2}$; 2 kutcha roofs, the rest tiled, on mud walls about 7 ' high, in bad order; 2 small sheds, 1 tiled, the other thatched.
5. Doorga $\ldots{ }^{-1} \ldots$ (Valuation, 90 rs.)	4 rooms; average $7 \frac{1}{4}^{\prime}$ by $4 \frac{1}{}_{\prime}^{\prime} ; 2$ kutcha roofs and 2 tiled, the latter one of 2 stories; walls mud, about 12 feet high, in fair order.
6. Purma (Valuation, 75 rs.)	5 rooms; average $13 \frac{1^{\prime}}{}$ by $7^{\prime} ; 2$ kutcha roofs, the other tiled, on mud walls about 8^{\prime} high, in bad order.
7. Purtab (Valuation, 300 rs.)	9 rooms; average 16^{\prime} by $73^{\prime} ; 4$ kutcha roofs, the rest tiled, on mud walls about 9^{\prime} high, in fair order.
8. Ballooaha (Valuation, 67 rs.)	2 rooms; average 21^{\prime} by $81^{\prime} ; 1$ kutcha, the other tiled roof; mud walls about 10^{\prime} high, in fair order.
$\begin{aligned} & \text { 9. Pershad } \ldots . \\ & \text { (Valuation, }{ }^{5} \text { rs.) } \end{aligned}$	1 room, 91^{\prime} by 69^{\prime}, with tiled roof; mud walls $6 \frac{1}{\prime}$ high, in bad order.
$\begin{aligned} & \text { 10. Toola } \ldots \\ & \text { (Valuation, } \quad 80 \mathrm{rs} \text {.) } \end{aligned}$	6 rooms; average $9 l^{\prime}$ by $17 \frac{h^{\prime}}{}$; 1 kutcha roof, the others tiled, on mud walls about 8^{\prime} high, in bad orrler.
11. Ghasee (Valuation, 132 rs.)	4 rooms; average $10^{\frac{1}{4}}$ by $5 \mathbb{4}^{\prime} ; 1$ roof kntcha, the others tiled; mud walls about 7 high, in fair order; 2 rooms with 2 stories.
12. Munniram (Valuation, 80 rs.$)$	3 rooms: average $6 t^{\prime}$ by $5 \frac{1}{\prime} ; 2$ of 2 stories, with tiled rools, the other of kutcha; mud walls about $13 \frac{1}{2}$ high, in fair order.
13. Cheda ... (Valuation, 100 rs .)	4 rooms; average 10^{\prime} by 5 P' $^{\prime}$; kutcha roofa, walls of mud, about 10 feet high, in bad order; also 2 tiled rool sheds.

1,105 superficial feet, at $12 r s$. per 100 , equal to 132 rs .10 a.; 2,550, at 7 rs ., 178 rs .8 a .; kutcha pukka revetment, 55^{\prime} by 9^{\prime} by 5 , at 6 rs ., 14 rs .8 a.: total, 459 rs .10 a .; labour, at 2 rs. 8 a., 91 rs. 5 a.; part only required.
780 superficial feet, at 5 rs . per 100, equal to 39 rs .; labour, at 1 r .8 a ., 11 rs .12 a .
525 superficial feet, at $4 r$ s. per 100 , equal to 21 rs .; labour, at 1 r .8 a ., 7 rs .12 a .; in bad order.
360 superficial feet, at 3 rs . per 100 , equal to 10 rs ; labour, at 1 r .8 a ., 5 rs. 4 a.; in bad order.

130 superficial feet, at 5 rs . per 100 , equal to 6 rs .12 a .; labour, at $1 r .8 a ., 1 r .12 a$. ; in very bad order.
472 superficial feet, at $3 \mathrm{rs}, 8 \mathrm{a}$. per 100 , equal to 16 rs .8 a . ; labour, at 1 r .8 a ., 7 rs .
1,080 superficial feet, at 7 rs . per 100 , equal to 75 rs .8 a ; labour, at $2 \mathrm{rs} .8 \mathrm{a}, 27 \mathrm{rs}$.; in good order.
346 superficial feet, at 4 rs . per 100 , equal to $13 \mathrm{rs} .4 a$; labour, at $1 r .8$ a., 5 rs .4 a.
62 superficial feet, at 4 rs . per 100 , equal to 2 rs. 3 a.; labour, at 1 r. 8 a., 14 a.
971 superficial feet, at 4 rs . per 100 , equal to 38 rs .8 a.; labour, at $1 r .8$ a., 14 rs. 8 a.
235 superficial feet, at 6 r s. per 100 , equal to 15 rs .4 a.; labour, at 2 rs ., 4 rs. 9 a.
150 superficial feet, at 7 rs . per 100 , equal to 10 rs .8 a.; labour, at 5 rs ., 7 rs. 8 a.
227 superficial feet, at 6 rs .8 a. per 700, equal to 11 rs .12 a ; labour, at 2 rs., 4 rs .8 a.

Names of and Valuation by Owners.	Description.
14. Buddoollah (Valuation, 110 rs .)	6 rooms; average 14$\}^{\prime}$ by $6{ }^{2}$; 3 kutcha roofs, 2 tiled and 1 thatched; mud walls about 9 省 $^{\prime}$ high, in bad order.
15. Doora (Valuation, 300 rs .)	5 rooms; average 12^{\prime} by $6^{\prime} ; 4$ kutcha and 1 tiled roof; mud walls about 8^{\prime} high, in bad order.
16. Bheekha $\ldots \quad \ldots$ (Valuation, $32 r s$.	2 rooms; average $16 \frac{1^{\prime}}{4}$ by $16 \frac{1^{\prime}}{}$; kutcha roofs on mud walls about $8 \frac{1_{2}^{\prime}}{}$ high, in bad order; 1 roof nearly in ruins.
17. Dhunowri (Valuation, 20 rs.)	5 rooms; $10 \frac{1_{2}^{\prime}}{}$ by $6^{\prime} ; 3$ kutcha and 2 tiled roofs; mud walls 7^{\prime} high, in very bad order.
18. Munsa (Valuation, 98 rs .)	3 rooms; average $16 \frac{1^{\prime}}{}$ by $6 \frac{1^{\prime}}{}{ }^{\prime} ; 2$ kutcha and 3 tiled roofs; mud walls about 7^{\prime} high, in bad order.
19. Madar and Dhore (Valuation, 12 rs.)	1 room; $8 \frac{1^{\prime}}{}$ by $7 \frac{1}{4}$; tiled roof; walls mud, about 6 high, in very bad order; 1 tiled shed.
20. Bullooa \ldots (Valuation, 30 rs .)	1 room; 23^{\prime} by 93^{\prime}; tiled roof, on mud walls, $7{ }_{2}^{\prime}$ high, in bad order.
21. Bissumber (Valuation, $40 r s$.	1 room; 154 ${ }^{\frac{3}{4}}$ by $6 \frac{1}{3}$; ditto, ditto.
22. Ramzan (Valuation, 45 rs.)	2 rooms; $13 \frac{1^{\prime}}{4}$ by 8^{\prime}; tile roofs; mud walls 10^{\prime} high, in bad order.
23. Polaz (Valuation, .) 24. Sadharce (Valuation, 200 rs .)	Part of a side wall of the house; $\mathbf{6}^{\boldsymbol{\prime}}$ in height; mud; in fair order. 6 rooms; average $12 \frac{1_{3}^{\prime}}{}$ by $7 k_{3}^{\prime}$; tile roofs; mud walls $7 \frac{1}{2}$ high, in fair order.
25. Nugnoo $\underset{\text { (Valuation, }}{80} \mathrm{rs}$.) \cdots (Valuation, 80 rs.)	6 rooms; $15 \frac{3^{\prime}}{}$ by $7 \frac{1}{3}$; tile roofs; mud walls, in fair order, $7 \frac{1}{2}$ high.
26. Chedah (Valuation, 25 rs .)	3 rooms; 193' by 6^{\prime}; kutcha roofs; mud walls, $8 \frac{1}{2}$ feet high, in bad order.
27. Ramzan (Valuation, 50 rs.$)$	3 rooms; $17 \frac{y}{\prime}^{\prime}$ by 8^{\prime}; tile roofs on mud walls 10 feet high, in bad order.
28. Dhunnee (Valuation, 150 rs .)	9 rooms; 12' by $6 \mathbf{l}^{\prime} ; 3$ of kutcha, the rest tile roofs; on 2 stories; rooms mud walls, $9 \mathbf{l}^{\prime}$ high, in bad order.
29. Gunsamsing ... (Valuation, 105 rs .)	2 rooms; 22^{\prime} by 10^{\prime}; tile roofs, mud walls, 11 high, in bad order; rooms 2 stories.
$\begin{aligned} & \text { 30. Esurie } \ldots \\ & \text { (Valuation, } 95 r s .) \end{aligned}$	5 rooms; $15 \frac{1_{2}^{\prime}}{}$ by $5 \frac{k^{\prime}}{}{ }^{\prime}$; one of 2 stories; mud walls, $9 \mathbf{l}^{\prime}$ high, in bad order, tile roofs.
31. Sahtawan (Valuation, 100 rs .)	6 rooms; $13 \mathbf{3}^{\prime}$ by $6^{\prime} ; 2$ kutcha, the rest tiled roofs; mud walls, 7^{\prime} high, 1 with a kutcha pukka foundation, $19{ }^{\prime}{ }^{\prime}$ by 6^{\prime}.
32. Sadhar (Valuation, 90 rs)	4 rooms ; $13 \frac{1}{2}{ }^{\prime}$ by $7 \frac{1}{2}$; 1 kutcha, the rest tiled roofs; 1 room with 2 stories; mud walls, $6 \frac{1^{\prime}}{}{ }^{\prime}$ high, in bad order.
88. Chand ... (Valuation, 300 rs .)	5 rooms ; $19 \chi^{\prime}$ by $64^{\prime} ; 1$ kutcha, the rest tiled roofs; 1 room 2 stories; mud walls, 10^{\prime} high, in fair order.

Remarke by the Committee.

444 superficial feet, at 5 rs . per 100 , equal to $22 r s .2 a$; labour, at $1 r .8$ a., $6 \mathrm{rs} .9 a$.; in very bad order.
360 superficial feet, at 5 rs . per 100 , equal to 18 rs ; labour, at 1 r .8 a ., 5 rs .6 a.
214 superficial feet, at $4 r s .8$ a. per 100 , equal to 9 rs .8 a.; labour, at 1 r. 8 a., 3 rs. 4 a.
315 superficial feet, at 4 rs . per 100 , equal to $12 r$. 8 a.; labour, at $1 r .8$ a., 4 rs. 12 a.
300 superficial feet at 7 rs . per 100 , equal to 21 rs . ; labour, at 2 rs ., 6 rs .

61 superficial feet, at $4 r$ s. per 100 , equal to 2 rs .8 a ; labour, at 2 rs , $1 r .3 a$.
224 superficial feet, at 4 rs . per 100 , equal to 8 rs .15 a ; labour, at 1 r. 8 a., $3 r s .5$ a.
99 superficial feet, at 5 rs . per 100 , equal to $4 r s .15 a$; labour, at $1 r$. 8 a., $1 r .8$ a.; a portion only taken.
212 superficial feet, at 5 rs . per 100 , equal to 10 rs .8 a ; labour, at $1 r .8$ a., $3 \mathrm{rs} .12 a$.; in bad order.

540 superficial feet, at 6 rs per 100 , equal to $32 \mathrm{rs} .4 a$. ; labour, at 2 rs , 10 rs. 12 a.
651 superficial feet, at 4 rs . per 100 , equal to 26 rs ; labour, at 1 r .8 a., 9 r .12 a .; in bad order.
355 superficial feet, at $5 r s$. per 100 , equal to 17 rs . $12 a$. ; labour, at $1 r .8 a ., 5 r s .5 a$.
408 superficial feet, at 4 rs . per 100 , equal to 10 rs .2 a ; labour, at 1 r . 8 a., 6 rs .1 a ; in bad order.
675 superficial feet, at 5 rs . per 100 , equal to 33 rs. 12 a. ; labour, at 2 rs., $13 r s .8$ a.
440 superficial feet, at 7 rs . per 100 , equal to 30 rs. $12 a$.; labour, at $2 r s$., 8 rs. 13 a.
426 superficial feet, at $4 r s$. per 100 , equal to 17 rs ; labour, at 1 r .8 a ., 6 rs. 3 a.
492 superficial feet, at 4 rs . per 100 , equal to $19 \mathrm{rs} .10 a$.; labour, at $1 \mathrm{r} .8 \mathrm{a}, 7 \mathrm{r} \mathrm{s} .1$ a.
405 superficial feet, at 5 rs . per 100, equal to $20 \mathrm{rs}$.1 a.; labour, at $1 r$. $8 \mathrm{a}, \mathrm{E}_{\mathrm{rs}}$.
601 superficial feet, at 5 rs. per 100, equal to 30 rs ., \times wall at 10 rs ., 40 rs ; labour, at $1 \mathrm{r} .8 \mathrm{a}, 9 \mathrm{rs} .6 \mathrm{a}$.

Names of and Valuation by Owners.	Description.	Remarks by the Committee.
34. Cheda ... (Valuation, 100 rs.)	7 rooms ; 144^{\prime} by $61^{\prime} ; 1$ kutcha, the rest tile roofs; mud walls, 6^{\prime} high, in bad order.	633 superficial feet, at 5 rs . per 100 , equal to 31 rs .8 a.; labour, at 1 r . 8 a., 9 rs. 8 a.
35. Goordial (Valuation, 40 rs .)	2 rooms ; $15 \hat{t}^{\prime}{ }^{\prime}$ by $8 \frac{1^{\prime}}{4}$; tile roofs; mud walls, 6^{\prime} high, in bad order.	260 superficial feet, at $3 r s$. per 100 , equal to $7 \mathrm{rs} .12 a$.; labour, at 1 r . 8 a., 3 rs. 14 a.
36. Fakeeraz (Valuation, 64 rs .)	4 rooms; $14 \frac{1^{\prime}}{}$ by $6^{\prime} ; 2$ kutcha and 2 tile roofs; mud walls, 9 feet high, in fair order; north-west walls, plinth, and foundations of kutcha pukka masonry 6 feet deep, and pukka plaster.	342 superficial feet, at 7 rs. per 100 , equal to 23 rs .13 a. ; labour, at 2 rs ., 6 rs .13 a .
37. Mukooa (Valuation, 31 rs.)	1 room; 83^{\prime} by $6 \frac{1^{\prime}}{}{ }^{\prime}$; kutcha roof; mud walls, 8^{\prime} high, in fair order.	56 superficial feet, at $4 r s$. per 100 , equal to $2 r s .4 a . ;$ labour, at $1 r$. 8 a., 13 a.
38. Cheda ... (Valuation, 36 rs .)	3 rooms; 13^{\prime} by 6 ª $^{\prime} ; 1$ kutcha, the rest tiled roofs; mud walls, $7 \frac{1}{2}$ feet high, in bad order.	263 superficial feet, at 4 rs . per 100 , equal to 10 rs .8 a.; labour, at 1 r . 8 a., 3 rs. $14 a$.
39. Soobba (Valuation, 15 rs.$)$	2 rooms; $13 \frac{1}{2}^{\prime}$ by $6 \frac{1^{\prime}}{}$; 1 kutcha, the others tile roofs; mud walls, 7^{\prime} high, in bad order.	172 superficial feet, at 3 rs. per 100 , equal to 5 rs .2 a.; labour, at $1 r$., $1 r .11 a$.

(Signed)	C. W. Hutchisson, Lieutenant,	(Signed)	C. Tnour, Major, President
	Executive Engineer	(Signed)	G. R. Sbdons, Captain,
	6th Division, Ganges Canal	((Signed)	'I. Riduell, Captain, ${ }^{\text {a }}$ Member
(Signed)	T. Asmbunham, Brigadier,	(Signed)	R. Wrodghton, S.A.C.G., ${ }^{\text {a }}$, Menbers.
	Commanding the Station.	(Signed)	Nasir Alli Klan,

Attending the Committee:-

(Signed) Jobn Eliot, Lieutenant, Temporary Assistant, 6th Division, Ganges Canal.
(Signed) Geo. Sim, Lieutenant, Officiating Executive Engineer, 7th Division, Public Works.

Surtey Report of a Committee appointed by order of the Brigadier Commanding the Station of Cawnpoor to Survey and Value certain Buildings and Property which come in the line required for the Ganges Canal through the Suddor Bazar and Cantonment.-Cawnpoor, 8th March, 1851.

THIRD SECTION.

President-Major C. Troup.
Members-Captain G. R. Siddons, Captain T. Riddell, Lientenant R. Wrougeton. Stud Nasir Alli Khan, Deputy Magistrate.

Names of and Valuntion by Owners.	Description.	Remarks by the Committee.
1. Ghunsam Sing (Valuation, 3,200 rs.)	44 rooms ; average, 15^{\prime} by $6 \frac{3^{\prime}}{4} ; 10$ of tile, and the rest of kutcha roofs but 3 , which are of pukka ; 4 rooms are 2 stories high; about 165 feet length of wall 111 feet high, and foundation is of kutcha pukka masonry and the rest of mud; 2 tile sheds, average 31^{\prime} by 83^{\prime}, on mud pillars, in fair order.	The whole to be taken, equal to $1,000 \mathrm{rs}$; labour, 200 rs.
2. Ramlall and Poorun ... (Valuation, 100 rs.)	3 rooms; average 8^{\prime} by $6 f^{\prime}$; of kutcha roof; walls mud, about 9 feet high, in bad order.	150 superficial feet, at 6 rs . per 100 , equal to 9 rs ; labour, at $2 \mathrm{rs}, 3 \mathrm{Br}$; only a portion taken.

Names of and Valuation by Owners.	Description.
3. Chand Khan (Valuation, 30 rs.)	2 rooms; average $11 \frac{3}{4}^{\prime}$ by $6 \frac{1^{\prime}}{}$; of kutcha roof; walls, mud, about 2 feet high, in bad order.
4. Gderaj (Valuation, 1,500 rs.)	4 rooms; average 13^{\prime} by $6 \frac{1^{\prime}}{}{ }^{\prime}$; 3 of kutcha roof, and the fourth of pukka and 2 stories; walls of one room of pukka kutcha masonry, and the rest of mud, in fair order.
5. Simboo (Valuation, $1,000 \mathrm{rs}$.	6 rooms; average 93^{\prime} by $5 \frac{1}{2}^{\prime} ; 3$ of kutcha roof and 3 of pukka; 2 of the last are 2 stories ; walls about 12 feet high, of kutcha pukka masonry, in fair order.
6. Heera Lall \ldots (Valuation, 210 rs. ..	2 rooms; average $10 \frac{1}{2}^{\prime}$ by $10 \frac{1}{2}$ '; of kutcha roof; walls of mud, about 13 feet high, in fair order.
7. Dullee (Valuation, 225 rs .)	2 rooms; $11 \frac{1}{4}^{\prime}$ by $6 \frac{1}{4}^{\prime}$; of tile roof; 2 stories; walls, ditto, ditto.
8. Khialee (Valuation, $325 r s$.)	5 rooms; average 9^{\prime} by $5 \frac{1}{4}^{\prime \prime} ; 3$ of kutcha roof and 2 of tile; 2 stories high; walls of mud, about 13 feet high, in fair order.
9. Gungapurshad \quad (Valuation, 30 rs.) (Valuation, 30 rs .)	1 room; $17 \frac{1^{\prime}}{4}$ by $8 \frac{1^{\prime}}{3}$; of tile roof; walls, ditto, in bad order.
10. Jowaher Lall (Valuation, 400 rs.)	3 rooms; average $11{ }^{2}$ by 6^{\prime}; of kutcha roof, one 2 stories high; walls of mud, about 11 feet high, in bad order.
11. Choonnee (Valuation, 175 rs.)	4 rooms ; average 14^{\prime} by 5^{\prime}; 3 of kutcha roof, and 1 of tile; 2 stories high; walls, ditto.
12. Bukhtawur (Valuation, 200 rs .)	4 rooms ; average 6^{\prime} by $4^{\prime} ; 3$ of kutcha roof, and 1 tile; 2 stories high; walls, ditto, ditto.
13. Luskurree (Valuation, $20 r s$.)	3 rooms; average 8^{\prime} by $53^{\prime \prime}$; of kutcha roof; walls, ditto, ditto.
14. Gain Chund \qquad (Valuation, $46 r s$.)	1 room; 162^{\prime} by 7^{\prime}; of tile roof; walls, ditto, ditto.
15. Mohunlall \ldots.... (Valuation, $250 r s$.)	3 rooms; average 11^{\prime} by $5 \frac{1}{3}^{\prime}$; of kutcha roof; walls, ditto, ditto.
16. Rampersand (Valuation, 60 rs .)	1 room or grass shed; 194^{\prime} by 5$\}^{\prime}$; wall of mud, $9 \frac{1}{4}$ feet high, in bad order.
17. Muddarbux (Valuation, 375 rs .)	2 rooms; average 10^{\prime} by 6^{\prime}; of kutcha roof; 2 story ; walls, ditto, 15 feet high, ditto.
18. Rampersand (Valuation, 150 rs.)	4 rooms; average $10 \frac{1}{4}^{\prime}$ by $53^{\prime \prime} ; 1$ of kutcha and the rest of tile roof ; walls, ditto, ditto.
19. Onsuree (Valuation, 200 rs .)	4 rooms; average 133^{\prime} by $5 j^{\prime}$; of kutcha roof; walls, ditto, ditto.
20. Chutnoree (Valuation, $1,225 r s .)$	7 rooms; avcrage 17^{\prime} by $7 \frac{1}{4}^{\prime} ; 4$ of tile, 1 of which is 2 story high roof, and the rest of kutcha; walls of 2 rooms of kutcha pukke masonry, and of the rest of mud; also foundations of pukka kutcha masonry, about 11 feet high, in fair order.

VOL. LI.

Remarks by the Committee.

152 superficial feet, at 5 rs . per 100 , equal to 7 rs .9 a.; labour, at $1 r .8 a$., $2 r s .4 a . ;$ a small portion taken.
120 rs . This valuation has been assumed on account of superior materials and workranship; and although part only is taken, it will destroy a greater part of the property not taken by canal officers.
$150 r$ s. Valuation adjudged by committee.

210 superficial feet, at 12 rs . per 100 , equal to 25 rs .3 a .; labour, 5 rs . $4 a . ;$ only portion taken.
A portion only to be taken; 281 superficial feet, at 8 rs. 8 a. per 100 , equal to $28 r$ s. $13 a$.; labour, at $2 r s$. $8 a ., 7 r s$. (well, $5 r s$.)
Front portion only taken, at 8 rs . per 100 , equal to 22 rs .10 a ; labour, 7 rs .; owner not present.
A portion only taken; 142 superficial feet, at 4 rs. 8 a. per 100 , equal to 6 rs. 8 a.; labour, at l r. 8 a., 2 rs. 4 a.
423 superficial feet, at 7 rs . per 100 , equal to 29 rs .9 a ; labour, at 2 rs ., 8 rs. 7 a.
420 superficial feet, at 7 rs . per 100 , equal to 29 rs .6 a. ; labour, at 2 rs ., 8 rs. 7 a.
144 superficial feet, at 10 rs . per 100 , equal to 14 rs .7 a .; labour, at 2 rs. 8 a., 3 rs. 7 a.
135 superficial feet, at 5 rs . per 100 , equal to $6 r s .12 a$; labour, at $1 r$. 8 a., 2 rs. 1 a.
115 superficial fect, at 5 rs . per 100 , equal to 5 rs .12 a ; labour, at $1 r$. $8 a ., 1 r .12 a$.
A portion only taken; 176 superficial feet, at 6 rs . per 100 , equal to 10 rs . 9 a.; labour, at 2 rs., 3 rs. 8 a.
A small portion taken; 105 superficial feet, at 5 rs . per 100, equal to 5 rs .4 a .; labour, at $1 \mathrm{r} .8 \mathrm{a}, 1 \mathrm{r} .8 \mathrm{a}$.
A small portion taken; 240 superficial feet, at 8 rs. per 100, equal to 19 rs .4 a.; labour, at 2 rs .8 a., 6 rs.
A portion only taken; 210 superficial feet, at 6 rs . per 100 , equal to 12 rs . 9 a.; labour, at 2 rs., 4 rs. 3 a.
453 superficial feet, at 9 rs . per 100 , equal to 40 rs .14 a. ; labour, 9 rs.
Merely compound and rear, valued, tiled; 527 superficial feet, at 4 rs. per 100 , equal to 21 rs .; labour, at $1 r .8 a$., 7 rs .11 a.

Nnmes of and Valuation by Owners.
21. Rambux $\begin{aligned} & \text { mbux } \\ & \text { (Valuation, } 700 r s . . \end{aligned}$

22. Soobadar, surnamed
Bundur-Walla.
(Valuation, 250 rs .)
23. Kulloo Mul
(Valuation, .. .)
24. Munecram (Valuation, ..) \quad...
25. Mudarbur
(Valuation, 50 rs .)
26. Shamut Khan $\begin{aligned} & \text { (Valuation, } 36 \mathrm{rs} \text {.) }\end{aligned}$
27. Ilaheebur
(Valuation, 50 rs.)
28. Juggurnauth ... (Valuation $_{800} \mathrm{rs}$...
(Valuation, 800 rs .)
29. Sukhun $\underset{\text { (Valuation, }}{ } \quad$...
30. Gujjoo $\underset{\text { (Valuation, }}{\text {... }}$...
31. Laoo $\ldots \ldots$... \ldots
(Valuation, 275 rs.$)$
32. Bhola
(Valuation, 45 rs .)
33. Sirdharee \cdots, \ldots
(Valuation, 150 rs.)
34. Bhageerut
(Valuation, 335 rs .)
35. Lodhee
(Valuation, 276 rs .)
36. Gaiadeen
(Valuation, 800 rs.)
37. Goohroy
(Valuation, 200 rs .)
38. Persand
(Valuation, 380 rs .)

Description.

6 rooms ; average $17 \frac{1}{3}$ by $8^{\prime} ; 3$ of tile roof, and the rest of kutcha; walls of 3 rooms of kutcha pukka masonry, and the rest of mud, in fair order, about 8 ' high.
1 room (or his tomb) ; $9 \frac{1}{4}^{\prime \prime}$ by $9 \frac{1}{4}^{\prime}$; of pukka roof; wall of pukka kutcha masonry, pukka plastered, about $11 \frac{1}{2}$ feet high, in good order; 3 other tombs in bad order.
6 rooms; average $13 \frac{y^{\prime}}{}{ }^{\prime}$ by 83^{\prime}; two of kutcha, and the rest of tile roof; walls of mud, about 7 feet high; the 2 rooms of kutcha roof in good order, and the others in bad.
4 rooms ; average 88^{\prime} by $6^{\prime} ; 2$ of kutcha roof, 1 of tile, and 1 of grass; walls of mod, 7 feet high, in bad order.
2 rooms; average 14^{\prime} by 7^{\prime}; of tile roof; walls of mud, $7 \frac{1}{2}$ feet high, in bad order.
ă rooms ; average 12^{\prime} by $6 \frac{1^{\prime}}{} ; 1$ of grass roof, and the rest of kutcha; walls, ditto, ditto.

3 rooms; average $16 \frac{3^{\prime}}{}$ by $6 \frac{1}{3^{\prime}} ; 2$ of kutcha and 1 of tile roof; walls, ditto, ditto.

9 rooms; average $13 \frac{1}{\prime}^{\prime}$ by $6 \frac{1}{\prime}^{\prime} ; 6$ of tile roof and 2 stories high, and the rest of kutcha roof; walls of mud, about 11 feet high, in fair order.
10 rooms ; average $9 \frac{z^{\prime}}{}$ by $6^{\prime} ; 3$ of tile roof, 2 stories high, and the rest of kutcha; walls, of mud, ditto, ditto.
2 rooms; average $15 \frac{1}{\frac{1}{2}}$ by $6 \frac{1}{2} ; 1$ of kutcha roof and the other of tile; walls of mud, in bad order; height of walls about 9^{\prime} feet.
7 rooms; average 15^{\prime} by $6^{\prime} ; 5$ of kutcha roof and 2 of tile, 1 of which is 2 stories high; walls of mud, ditto, ditto.
1 room; $15 \frac{l^{\prime}}{}{ }^{\prime}$ by 6^{\prime}; of tile roof, 2 stories; walls of mud, 13 feet high, in fair order.

6 rooms ; average 113^{3} by $6 \frac{1}{2} ; 2$ of tile roof, and the rest of kutcha; walls of mud, 10 feet high, in bad order. One tile shed, 11^{\prime} by $5{ }^{3}{ }^{\prime}$.
8 rooms; average 10^{\prime} by $5 \frac{1}{2}$; 4 of tile, and 1 of grass, 2 stories, the rest of kutcha roof; walls of mud, in bad order, high, about 10 feet.
4 rooms; average $10 \frac{1}{4}^{\prime}$ by $7 \frac{1}{\prime}^{\prime} ; 2$ of tile roof, 2 stories high, and the rest of kutcha roof; walls of mud, 10 feet high, in good order.
9 rooms; average 7^{\prime} by 6^{\prime}; of kutcha roof; walls of mud, 11 feet high, in good order.

8 rooms; average $9 b^{\prime}$ by 6^{\prime}; of tile roof, oue 2 story tile; walls $9 l^{\prime}$ feet high, in good order.

18 rooms ; average $13 \ddagger^{\prime}$ by $8^{\prime} ; 4$ of kutcha roof, and the rest of tile; walls of mud, 7 feet high, in bad order. Three tile sheds, 26^{\prime} by $6 \mathfrak{g}^{\prime}$.

Remarks by the Committee.
828 superficial feet, at 11 rs . per 100 , equal to 91 rs ; labour, at 2 rs. 8 a. per 100, 20 rs . $14 a$.

A tomb, \&e.; 100 rs.

698 superficial feet, at 3 rs . per 100 , equal to $34 r s .15 a$.; labour, at $2 r s$., 13 rs. 15 a.

198 superficial feet, at 4 rs. per 100 , equal to $7 r s .14 a$; labour, at $1 r$. 8 a., 2 rs. 14 a.
196 superficial feet, at 4 rs. per 100, equal to $7 \mathrm{rs} .13 a$. ; labour, at 1 r . 8 a., 2 rs. 14 a.
390 superficial feet, at $2 r$ s. per 100, equal to 7 rs . $15 a$.; labour, at $1 r$., $3 r s .15 a$.
304 superficial feet, at 4 rs . per 100, equal to $12 r s .3 a$. ; labour, at $1 r$. 8 a., 4 rs. 9 a.
1,080 superficial feet, at 30 rs . per 100, equal to 324 rs ; labour at 5 rs., $54 a$.

570 superficial feet at $12 r$ r. per 100 , equal to 68 rs .8 a . ; labour, at 4 rs ., 22 rs. 12 a.
In very bad order ; 4 rs.

630 superficial feet, at 8 rs . per 100, equal to 50 rs . 5 a .; labour, at 3 rs ., 18 rs .15 a .
186 superficial feet, at 7 rs . per 100, equal to 13 rs ; labour, at 2 rs ., 3 rs. $12 a$.
454 superficial feet, at 5 rs . per 100, equal to 22 rs . $15 a$; labour, at 2 rs , 9 rs. 1 a.
660 superficial feet, at 10 rs . per 100 , equal to 66 rs ; labour, at 2 rs , 13 rs .3 a.

445 superficial feet, at 16 rs . per 100 , equal to 71 rs . ; labour, at 3 rs ., 13 rs .5 a .
378 superficial feet, at 30 rs . per 100, equal to 113 rs . 6 a.; labour, at 4 rs., 13 rs. 5 a., woodwork much.
513 superficial feet, at 6 rs . per 100 , equal to $30 r$ s. $12 a$.; labour, at $1 \mathrm{rs} .8 \mathrm{a}, \mathrm{y}$ rs. 9 a.
1,908 superficial feet, at 6 rs . per 100 , equal to 114 rs .8 a ; labour, at 2 rs , 38 rs. 2 a.

Names of and Valuation by Owners.
39. Kooelee (Valuation, $\ddot{250 r s .)}$
$\begin{aligned} & \text { 40. Munherdoss } \ldots \\ & \text { (Valuation, } 400 r s . \text {) } \end{aligned}$

41. Tilokee
(Valuation,
160
rs...
42. Laoo … ... $\quad .$.
(Valuation, 200 rs .)
43. Goordeen
(Valuation, $\dddot{350} r s$. .)
44. Byjnauth
(Valuation, $\mathbf{4 , 0 0 0}$ rs.)
45. Goolaba
(Valuation, 157 rs .)
46. Bhowaneedeen ...
(Valuation, 700 rs .)
47. Goolab Khan Kotwal ...
(Valuation, 800 rs .)
48. Лhooma
(Valuation, 600 rs .)

49. Roshun Lall ...
(Valuation, 650 rs...
50. Herdoss
(Valuation, 3,500 rs.
51. Kamall
(Valuation, 3,000 rs.)
52. Rampersand ..
(Valuation,)

Description.

6 rooms; average 13^{\prime} by $\frac{8}{3}^{\prime}$; 2 tile roof, and the rest of kutcha; walls, ditto, ditto, in bad order, one 2 stories.
3 rooms ; average $8 \frac{s^{\prime}}{}$ by $6 \mathbf{y}^{\prime} ; 1$ of kutcha roof, and the rest of tile; walls of one room of pukka kutcha masonry, the rest of mud, 6^{\prime} high ; also foundations of pukka kutcha masonry, in fair order.
9 rooms; average $13 \frac{1^{\prime}}{}$ by $4 \frac{1}{2}^{\prime}$; 4 of tile roof, 1 of which is 2 stories, and the rest of kutcha roof; walls of mud, 8 feet high, in bad order.
5 rooms; average $19 \frac{1}{4}^{\prime}$ by $6 \frac{1}{\prime}^{\prime}$; of kutcha roof; also 2 grass sheds supported on pillars of mud; walls of mud, $8^{\frac{1}{4}}{ }^{\frac{1}{4}}$ high, in bad order.
10 rooms ; average $16 \frac{1^{\prime}}{4}$ by $53^{\frac{3}{4}} ; 4$ of tile roof, and the rest of kutcha; walls of mud, ditto, ditto.
11 rooms; average $12 \frac{1}{4}^{\prime}$ by $5^{\prime} ; 2$ of tile, 1 of pukka roof, 2 stories high, and the rest of kutcha roof; walls 285 feet long, and about 15 feet high, of kutcha pukka masonry, as also the foundations, the rest walls of mud, in good order; part of the courtyard 244 $\mathbf{4}^{1^{\prime}}$ by 8 , pukka plastered.
6 rooms; average $10 \frac{1^{\prime}}{}$ by $8^{\prime} ; 1$ of kutcha roof, and the rest of tile, of which 3 are 2 stories high; walls of mud, about 8 feet high, in very bad order.
11 rooms; average 18^{\prime} by $6 \frac{1}{2}^{\prime} ; 2$ of tile roof, and the rest of kutcha; walls of mud, $8 \frac{3^{\prime}}{}$ feet high, foundations of a wall 51 feet long of pukka kutcha masonry, in fair order.
8 rooms; average $16 \frac{1^{\prime}}{4}$ by $7 \frac{1}{\prime}^{\prime} ; 3$ of kutcha roof, and the rest of tile; walls of mud, $11 \frac{1}{2}$ feet high, in bad order.
9 rooms; average 92^{\prime} by $7 ; 6$ of tile roof, 2 of which are 2 stories, and the rest kutcha; foundations of kutcha pukka masonry; walls of mud, about 10 feet high, in bad order.
5 rooms; average 15^{\prime} by $7^{\prime} ; 2$ of tile roof, one of which is 2 stories, and the rest of kutcha; walls of mud, 11 feet bigh, in bad order.
7 rooms; average $1 l^{\prime}$ by 5^{\prime}; of kutcha roof, half of which is 2 stories; walls about 56 feet long, and foundations of pukka kutcha masonry, the rest of mud, in fair order.
19 rooms; average $10 \frac{1^{\prime}}{}$ by $6 \frac{1^{\prime}}{2} ; 7$ of tile roof, and 2 of pukka, 2 storics, and the rest of kutcha; walls about 360 feet long, $10 \$$ feet high, of pukka kutcha masonry, and the rest of kutcha, in fair order.
6 rooms; average 12^{\prime} by $6 \frac{1}{3} ; 1$ tile roof, 1 pukka, and the rest kutcha; walls of 4 rooms and front one of pukka kutcha masonry, as also the foundations; the rest mud wall, about $10 \frac{7}{4}$ feet high, in fair order.
All in ruins, but one wall of pukka kutcha masonry $24 \frac{1}{2}$ feet long and $6 \frac{3}{4}$ feet high.

Remarks by the Committee.

450 superficial feet, at 8 rs . per 100 , equal to 36 rs ; labour, at 2 rs . 9 rs .
150 superficial feet, at 20 rs . per 100 , equal to 30 rs ; labour, at 2 rs .8 a ., $3 \mathrm{rs} .12 a$., a very small portion only taken.

668 superficial feet, at 8 r s. per 100 , equal to 53 rs .6 a. ; labour, at 2 rs ., 13 rs. 4 a.
670 superficial feet, at 6 rs . per 100 , equal to $40 \mathrm{rs} .4 a$.; labour at $1 \mathrm{rs} .8 a$., 10 rs .
934 superficial feet, at 8 rs . per 100 , equal to 75 rs .12 a .; labour, at 2 rs ., 18 rs .8 a.
For all $1,000 \mathrm{rs}$; labour, 200 rs.

756 superficial feet, at 6 r s. per 100 , equal to $45 r s, 4 a$; labour, at 1 rs. 8 a., 11 rs .5 a.

1,287 superficial feet, at 8 rs . per 100 , equal to 103 rs ; labour, at 2 rs ., 25 rs .12 a .

942 superficial feet, at 6 rs . per 100 , equal to 56 rs .8 a ; ; labour, at 2 rs ., 18 rs .12 a.
748 superficial feet, at 7 rs . per 100 , equal to $52 r s .4 a$.; labour, at $2 r s$., 15 rs .

630 superficial feet, at 7 rs . per 100 , equal to 44 rs .2 a.; labour, at $2 r s$., 12 rs. 8 a.

For the whole $1,200 \mathrm{rs}$; ; labour, 250 rs.

532 superficial feet, at 60 rs. per 100 , equal to 319 rs ; labour, at 82 rs .

One piece of wall and some bricks; only in an open plot, equal to 5 rs .

Names of and Valuation by Owners.	Description.
54. Chatooree (Valuation, 1,050 rs.)	3 rooms; average $21 \frac{3^{\prime}}{}$ by $8 \frac{1^{\prime}}{}$; one of tile and the rest of kutcha roof; walls of 2 rooms of kutcha pukka masonry, and of the other of mud, and in bad order, height about 12 feet; one grass shed, $21 \frac{1}{4}^{\prime}$ by $13 \frac{3^{\prime}}{4}$.
55. Ujooddeea Persand ... (Valuation, $20 r e$.)	2 rooms; average 16^{\prime} by $73^{\frac{1}{1}}$; one of kutcha roof, and the other of the walls of mud 6 feet high, in bad order.
56. Persram $\quad \ldots \quad \ldots$ (Valuation, $1,000 \mathrm{rs}$.)	5 rooms; average $9 \frac{3}{4}$ by $6 \frac{3}{4}$; of kutcha roof; walls of kutcha pukka masonry, in good order.
57. Toonkeerain (Valuation, 1,100 rs.)	7 rooms; average $11 \frac{1}{4}$ by $8 \frac{1}{4}^{\prime}$; one of tile roof and the rest of kutcha; walls, ditto, ditto.
58. Herdoss (Valuation, 800 rs. .	5 rooms; average $21 \frac{11^{\prime}}{}$ by $9 \frac{1^{\prime}}{}{ }^{\prime}$; of pukka roof; walls of kutcha pukka masonry $13 \frac{1}{2}$ feet high; one outer wall 57 feet long, pukka plastered, in good order.
59. Moonjeeram (Valuation, 10,000rs.)	15 rooms; average $14 \frac{1^{\prime}}{}$ by $8^{\prime} ; 14$ of pukka roof, 3 of tile; 7 are 2 stories high; walls of pukka kutcha masonry about 12 feet high, in fair order; two tile sheds $27 \frac{1^{\prime}}{}$ by $8 \frac{1}{2}^{\prime} ; 1$ pukka shed $12 \frac{1^{\prime}}{}$ by $6 \frac{1^{\prime}}{}$.
60. Buldeo and Bukhtawur (Valuation, $10,000 \mathrm{rs}$.)	11 rooms; average 13^{\prime} by $8 \frac{1}{4}^{\prime}$; of kutcha roof; 5 rooms ; 2 stories; walls of pukka kutcha masonry about 15 feet high, in good order.
61. Chubbasing ... \quad. (Valuation, 138 rs .)	5 rooms; average 13^{\prime} by $5 \frac{1}{2}$; one of kutcha roof, and the rest of tile, 2 of which are 2 stories high; walls of mud about 9^{\prime} high, in fair order.
62. Jeewun (Valuation, 50 rs .)	3 rooms; average 113_{3} by 53^{2}; one of tile, and the rest of kutcha; walls of mud about 9^{\prime} high, in bad order.
63. Buldeo (Valuation, ${ }^{3} 00$ rs.)	5 rooms; average $14 \frac{1^{\prime}}{}$ by $6 \frac{1}{\prime}^{\prime}$; of kutcha roof but one, which is of tile roof, and 2 stories high; walls of mud about $8 \frac{1}{2}$ feet ligh, in bad order.

(Signed)	C. W. Hutceinson, Lieutenant.	(Signed)	C. Troup, Major, President.
	Executive Engineer,	(Signed)	G. R. Smdons, Captain,
	6th Division, Ganges Canal.	(Signed)	T. Riddell, Captain,
(Signed) Members.	T. Asbbornham, Brigadier,	(Signed)	R. Wrodghton, Lieut.,

Attending the Committee,
(Signed) John Eliot, Lieut., Temporary Assistant, Ganges Canal.
(Signed) Geo. Sm, Lieut., Officiating Executive Engineer, 7 th Division, Public Works.

Sorvey Report of a Committee appointed by order of the Brigadier commanding the Station of Cawnpoor to Survey and Value certain Buildings and Property which come in the line required for the Ganges Canal through the Suddur Bazar and Cantonment.-Cawnpoor, 18th March, 1851.

FOURTH SECTION.

President-Major C. Trour.
Members-Captain G. R. Siddons, Captain T. Riddell, Lieutenant R. Wrocgeton, Syud Nasir Ally Khan, Deputy Magistrate.

Names of and Valuation by Owners.	Description.
1. Baneeram and Gungadeen. (Absent.)	2 rooms; average 18^{\prime} by $83^{\prime} ; 1$ of tile and the other of kutcha roof; walls of kutcha pukka masonry, about 9 feet high, in fair order.
2. Nungoo (Valuation, 1,200 rs.)	14 rooms; average $10{ }_{2}^{\prime}$ ' by 7^{\prime}; of kutcha roof; 6 of these are 2 stories, 3 of kutcha pukka masonry, and the rest of mud, about $9 \frac{1}{2}$ feet high, in very bad order; also 2 tile sheds, $11 \frac{1}{2}$ ' by $7 \frac{1^{\prime}}{}{ }^{\prime}$.
3. Monjee Ram ... (Abseat.)	4 rooms; average 15^{\prime} by $9 \frac{11^{\prime}}{}$; 2 of pukka roof, 2 stories high, and the rest of kutcha; walls, kutcha pukka masonry, $11 \frac{1}{4}$ feet high, in fair order; also 1 tile shed, 23^{\prime} by 73^{\prime}.
4. Thakoordoss ... (Valuation, 500 rs .)	7 rooms; average $17 \frac{1}{4}$ ' by $6 \frac{1}{2}^{\prime}$; of kutcha roof; walls of mud, $10 \frac{1}{2}$ feet high, in bad order.
5. Deena ... (Valuation, 2,000 rs.)	9 rooms; average $9{ }^{\frac{1}{3}}$ by $6{ }^{2}{ }^{\prime} ; 3$ of tile roof, and the rest of pukka; walls of 3 rooms of pukka kutcha masonry, and the rest of mud, 101 feet high, in fair order; 1 tile shed, $20 \frac{1}{2}{ }^{\prime}$ by $7 \frac{1}{4}$.
6. Khemanund and GungaBishun (Valuation, $4,000 r s$.	4 rooms; average $17 \frac{\frac{1}{2}^{\prime}}{}$ by $7 \frac{\frac{1}{2}^{\prime} ; 2 \text { of tile roof }}{}$ and 2 stories, and the rest of pukka roof; walls of kutcha pukka masonry, 11 5-4ths feet high, in fair order; 1 tile shed, $20 \frac{1_{2}^{\prime}}{}$ by $7 \frac{1}{t^{\prime}}$.
7. Ramdial (Valuation, 400 rs .)	15 rooms; average $16 \frac{1}{4}$ by $6 \frac{1}{2}^{\prime} ; 2$ of tile roofs 2 stories high, and the rest of pukka and kutcha roofs; wall about 151 feet long and $10 \frac{1}{4}$ feet high, of kutcha pukka masonry, the rest of mud, in good order.
8. Humout Ram ... (Valuation, 7,000 rs.)	10 rooms; average 164^{\prime} by $8 \frac{1}{2}^{\prime} ; 6$ of pukka roofs, 2 stories high; walls of kutcha pukka masonry, 1 side pukka plastered and 19 feet high, 2 of tile roofs, and the rest of kutcha pukka; walls of 4 rooms of mud, 10 feet high, in very good order.
9. Poottoo (Valuation, 2,000 rs.)	9 rooms; average $10 \frac{1}{2}^{\prime}$ by 61'; 7 roofs kutcha and 2 tiled; walls of kutcha pukka masonry, $10 \frac{1}{4}$ feet high, in good order.
$\underset{\text { (Valuation, }}{\text { 10. }} \mathbf{6 0 0} \mathrm{rs}$..)	17 rooms; average 133^{\prime} by $5 \jmath^{\prime}$; of kutcha roofs; walls of 1 room of kutcha pukka masonry and the rest of mud, 9 feet high, in bad order; 1 tile shed, 103^{\prime} by $7 \frac{1}{2}^{\prime}$; 2 of kutcha roofs, in ruins.

Owner not present; 311 superficial feet, at 10 rs . per 100 , equal to 31 rs .2 a.; labour, at 2 rs ., 7 rs .12 a .

1,470 superficial feet, at 5 rs . per 100 , equal to 73 rs .8 a .; labour, at 2 rs ., $29 r s .6 a$.

855 superficial feet, equal to 400 rs ; labour, 100 rs .

739 superficial feet, at 8 rs. per 100, equal to 61 rs .5 a ; labour, at $2 r s .8$ a., $18 r s .7 a .6 p$.
Value, equal to 250 rs ; labour, 80 rs .

Value, equal to 500 rs ; labour, 130 rs.

Value, equal to 520 rs ; labour, 100 rs .

Value, equal to $2,300 \mathrm{rs}$; labour, 766 rs.

Value, equal to 118 rs ; labour, 17 rs. 13 a.

1,238 superficial feet, at 16 rs. per 100, equal to 207 rs ; labour, at 4 rs ., $49 r s .8 a$.

Names of and Valuation by Owners.	Description.
11. Bholanauth (Valuation, 3,000 rs.)	19 rooms; average $9 \frac{3}{4}^{\prime}$ by $6 \frac{3}{4}^{\prime} ; 1$ of tile and the rest of kutcha roof; walls of 5 rooms of kutcha pukka masonry and of the rest of mud, 11 feet high, in bad order; 1 tile shed, 37^{\prime} by $7 \frac{3}{4}^{\prime}$.
12. Motee ... (Valuation, 413 rs.)	11 rooms ; average 12^{\prime} by $6 \frac{3^{\prime}}{4} ; 6$ of tile and the rest of kutcha roof; walls of mud, 9 feet high, in bad order.
13. Moona Lall (Valuation, 151 rs .)	2 rooms; average 163^{\prime} by $5 \frac{1^{\prime}}{4}$; roofs kutcha; walls of mud, 10^{\prime} high, in bad order.
14. Russool (Valuation, 50 rs .)	1 room; $20 \frac{3}{4}$ by 10^{\prime}; of tile roof; wall of mud, 7 feet high, in bad order.
15. Gungaram (Absent.)	6 rooms; average $18 \frac{1^{\prime}}{2}$ by $7 \frac{\frac{1}{2}^{\prime}}{}$; 2 of tile roof and 2 stories high, and the rest kutcha; walls mud, 11 feet high, in fair order ; 1 tile shed, $15 \frac{1}{4}^{\prime}$ by $6 \frac{1}{2}^{\prime}$.
16. Khemchund (Valuation, 800 rs.$)$	8 rooms; average 13^{\prime} by $5 \frac{1^{\prime}}{3} ; 2$ rooms pukka, rest kutcha; wall about 62 feet long and 8 ${ }_{3}$ feet high, of kutcha pukka masonry, rest of mud, in fair order.
17. Bullee ... (Valuation, 2,000 rs.)	5 rooms; 19^{\prime} by $43^{\prime} ; 2$ of pukka roofs 2 stories high, and rest kutcha; wall 35 feet long and 10 feet high, of mud, rest of kutcha pukka masonry, in good order.
18. Thundeeram and Sokemun. (Valuation, 400 rs.)	7 rooms; average $10 \frac{1}{4}^{\prime}$ by $5 \frac{1^{\prime}}{}$; two of tile roofs 2 stories high, 2 of kutcha pukka, and rest kutcha roofs; walls of mud 10 feet high, in bad order.
19 Toukve (Valuation, 400 rs.$)$	10 rooms; average $18 \frac{1_{2}^{\prime}}{}{ }^{\prime}$ by 6^{\prime}; roofs kutcha; walls mud, about 10 feet high, in bad order.
20. Nund Kishore (Valuation, 200 rs. .	4 rooms; average $144^{1{ }^{\prime}}$ by $6 \frac{1}{4}^{\prime} ; 3$ roofs tiled 2 stories high, and 1 kutcha; walls mud, in fair order.
21. Khoosal (Valuation, $800 \mathrm{rs} .{ }^{\text {. }}$	4 rooms; average $15 \frac{1}{2}^{\prime}$ by $5 \frac{1^{\prime}}{4}$; roofs kutcha, 3 two-storied; walls mud, 15 feet bigh, in good order; walls of front room of kutcha pukka masonry.
22. Sumber (Valuation, ${ }^{1} 50 r s . .$.	3 rooms; average $152^{\prime \prime}$ by $6 \frac{1}{2}^{\prime}$; roofs kutcha; walls of mud, 12 feet high, in bad order.
23. Rickhee (Valuation, 150 rs.)	I room; $22 \frac{1^{\prime}}{}{ }^{\prime}$ by 53^{\prime}; roof tiled; walls mud, in very bad order.
24. Oody Raj $\because 0$... (Valuation, 500 rs.)	6 rooms; average 193^{\prime} by $8^{\prime} ; 1$ roof tile, rest kutcha; walls of mud, 10 feet high, in bad order; 1 tile shed, $211^{\prime \prime}$ by 7^{\prime}.
25. Doorgapersaud (Valuation, 500 rs .)	6 rooms; average $17{ }^{\prime}{ }^{\prime}$ by 84^{\prime}; 1 roof kutcha, rest tile; walls mud, in bad order.
26. Gain Chund (Valuation, 200 rs .)	7 rooms ; average 167^{\prime} by $7 \frac{1}{2}^{\prime} ; 2$ kutcha roofs, rest tiles; walls mud.
27. Munsaram $\underset{\text { (Valuation, }}{25} \mathbf{2 5} \mathrm{rs}$... (Valuation, 250 rs.$)$	4 rooms; average 17^{\prime} by $73^{\prime} ; 2$ kutcha roofs, rest tiles; walls mud.

Remarks by the Committee.

1,280 superficial feet, at 25 rs. per 100, equal to 300 rs ; labour, at 4 rs ., 80 rs .

891 superficial feet, at 7 rs . per 100 , equal to 62 rs . 11 a.; labour, at $2 r s$. , $17 \mathrm{rs} .14 a$.
175 superficial feet, at $10 r s$. per 100 , equal to 17 rs .8 a ; labour, at 2 rs .8 a., 4 rs. 5 a.
207 superficial feet, at 5 rs . per 100, equal to 10 rs ; labour, at 1 r .8 a ., 3 rs.
832 superficial feet, at 6 rs . per 100 , equal to 49 rs . 15 a .; labour, at 2 rs., 16 rs. 9 a.

554 superficial feet, at 30 rs . per 100, equal to $166 \mathrm{rs} .2 a$ a; labour, at 4 rs., 22 rs. 4 a.

Value, equal to 350 rs ; labour, 116 rs .

507 superficial feet, at 20 rs . per 100 , equal to $101 \mathrm{rs} .7 a$. ; labour, at $2 \mathrm{rs} .8 a ., 12 r s .10 a$.

1,110 superficial feet, at 10 rs . per 100 , equal to 111 rs .; labour, at $2 r \mathrm{~s} .8 \mathrm{a}$., $27 r s .12 a$.
534 superficial feet, at 8 rs . per 100 , equal to 42 rs .10 a ; labour, at $2 \mathrm{rs} .8 \mathrm{a}, 13 \mathrm{rs} .3 \mathrm{a} .6 \mathrm{p}$.
Value, equal to 400 rs ; labour, 100 rs.

304 superficial feet, at 5 rs . per 100 , 15 rs .4 a ; labour, at 1 r .8 a , 4 rs .8 є.
130 superficial feet, at 5 rs . per 100 , equal to 6 rs .8 a. ; labour, at $1 r .8$ a., 1 r. 15 a.
1,078 superficial feet, at 15% s. per 100 , equal to 161 rs .11 a .; labour, at $3 \mathrm{rs},. 32 \mathrm{rs}$. 5) a.
866 superficial feet, at 10 rs . per 100 , equal to 86 rs .10 a .; labour, at 2 rs .8 a., 21 rs .11 a.
879 superficial feet, at 7 rs . per 100 , equal to 61 rs .8 ar ; labour, at 2 rs ., 17 rs .8 a.
527 superficial feet, at 9 rs . per 100, equal to 47 rs .7 a ; labour, at 2 rs .8 a., $13 \mathrm{rs}$.2 a.

Names of and Valuation by Owners.	Description.	Remarks by the Committe.
28. Gungadeen (Valuation, $\ddot{1} 55$ rs.)	6 rooms; average $17 \frac{1^{\prime}}{}{ }^{\prime}$ by $7 \frac{1^{\prime}}{} ; 2$ tile roofs, 4 kutcha; walls mud.	761 superficial feet, at 5 rs. per 100, equal to 35 rs ; labour, at 2 rs. , 15 rs .
29. Goordial (Valuation, $\dddot{50}$ rs...	3 rooms; average $20 z^{\prime}$ by 8^{\prime}; 1 tile roof, and 4 kutcha; wall 63 feet long, kutcha pukka, $8 \frac{1}{2}$ feet high, rest mud, in bad order; 1 tile shed, $20{ }^{\frac{1}{3}}$ by 7^{\prime}.	660 superficial feet, at 20 rs . per 100 , equal to $\mathbf{1 3 2} \mathrm{rs}$.; labour, at 3 rs ,, $19 r$ r. $13 a$.
30. Junglee Soobadar ... (Valuation, 260 rs .)	12 rooms; average 12^{\prime} by $7^{\prime} ; 2$ roofs kutcha, and the rest of mud, in bad order; 1 tile sled, $28 y^{\prime}$ by 7^{\prime}.	1,008 superficial feet, at 8 rs. per 100 , equal to 80 rs ; labour, at 2 rs., 20 rs.
31. Seetul $\ldots . . \quad .$. (Valuation, 500 rs .)	6 rooms; average 15^{\prime} by $7 \frac{1}{2}^{\prime}$; 2 roofs tiled, and 4 kutcha; 2 sheds, 25^{\prime} by 63^{\prime}; walls mud, 11 feet high, in bad order.	652 superficial feet, at 12 rs. per 100, equal to 78 rs .9 a .; labour, at 2 rs ., 13 r s.
32. Sheopersaud and Dabeedeen. (Valuation, 500 rs .)	7 rooms; average 17^{\prime} by $8^{\prime} ; 4$ kutcha and 3 tile roofs; also 1 tile shed, $17 \frac{1}{2}$ ' by 63^{\prime}; walls mud, 11 feet high, in bad order.	952 superficial feet, at 15 rs . per 100 , equal to 142 rs .12 a ; labour, at 3 rs., 28 rs. 8 a.
33. Goordial (Valuation, $\cdots \quad$.	8 rooms; average $10 \frac{1}{2}^{\prime}$ by $7^{\prime} ; 4$ kutcha and 4 tile roofs; walls as in preceding.	588 superficial feet, at 10 rs . per 100 , equal to 58 rs .12 a .; labour, at 2 rs ., $11 r s .11$ a.
$\underset{\text { (Absent.) }}{\text { 34. }}$ Gungolee $\quad \ldots$	1 room; 17^{\prime} by $9 \frac{1^{\prime}}{}$; roof kutcha, and 1 tile shed, 17^{\prime} by $6 \frac{1}{4}$; ditto.	429 superficial feet, at 10 rs . per 100, equal to $42 r s .14 a$; labour, at 2 rs. $8 a ., 10 r s .11 a$.
(Signed) C. W. Hutcen	on, Lieutenant, (Signed)	C. Troup, Major, President.
	Executive Enginecr, (Signed)	T. Riddels, Captain,
	th Division, Ganges Canal. (Signed)	G. Siddons, Captain,
(Signed) T. Ashburne	Brigadier, (Sig口ed) (Signed)	R. Wrovghton, Licut., Nasir Ally Khan,
Attending the Committee- ${ }_{\text {(Signed) }}^{\text {Joun Eliot, Lieutenant, }}$ Temporary Assistant, Ganges Canal.		
(Signed)	Geo. Sist, Lieutenant, Officiating Executive Engineer, Public Works, Cawnpoor.	

Subvey Report of a Committee appointed by order of the Brigadier Commanding the Station of Cawnpoor to Survey and Value certain Buildings and Property which come in the line required for the Ganges Canal, through the Suddur Bazar and Cantonment.-Cawnpoor, 19th March, 1851.

FIFTH SECTION.
President-Major C. Trodp.
Members-Captain G. R. Siddons, Captain T. Riddell, Lieutenant R. Wrodarton, Syud Nasm Alli Kuan, Deputy Mragistrate.

Namer of and Valuation by Owners.	Description.
1. Bukhtu (Valuation, $100 \mathrm{rs} .{ }^{\text {. }}$	3 rooms ; average 12^{\prime} by $6 \frac{1}{2}^{\prime} ; 2$ of tile, and 1 of kutcha roof; mud walls, about 9 high, in fair order; also a tile shed, 344^{\prime} by $5 \frac{1}{2}$.'
2. Baday and Bhowance... (Valuation, 400 rs .)	7 rooms ; average $10 \frac{1}{4}^{\prime}$ by $7^{\prime} ; 6$ of tiled roofs, 3 of which are two-storied, the rest kutcha; walls 11 feet high, in fair order; a shed tiled roof, 18^{\prime} by 33^{\prime}.
3. Jumna Dass and Motee Ram. (Valuation, 1,400 rs.)	3 rooms; average $10 \frac{3^{\prime}}{4}$ by $10 \frac{1}{2}^{\prime}$; kutcha roofs; walls 10 feet high, of kutcha pukka, in good order.

312 superficial feet, at 6 rs . per 100 , equal to 18 rs . 12 a ; labour, at 1 r. 8 a., 4 rs. 9 a.
717 superficial feet, at $12 r s$. per 100 , equal to 86 rs ; labour, at 3 rs ., 21 rs. 8 a.

Value, equal to 750 rs ; labour, 250 rs.

Names of and Valuation by Owners.	Description.
4. Muchul (Valuation, 400 rs..)	8 rooms; average $13 \frac{1}{2}$ by $6 \frac{1^{\prime}}{4} ; 4$ of tiled roofs, of which 2 are two-storied, and 4 of kutcha roof (one in ruins) ; mud walls 9 feet high, in bad order; a shed, tile roof, $20 \frac{1}{2}^{\prime}$ by 6^{\prime}.
5. Dhersing ... \quad.	House in ruins
6. Sheropersad (Valuation, 700 rs .)	8 rooms; average $16 \frac{1}{\prime}^{\prime}$ by $63^{\prime \prime} ; 4$ of which tiled, 2 of 2 stories, and 4 kutcha roofs (one in ruins); mud walls 9 feet high; also a tile shed, $16 \frac{3^{\prime}}{4}$ by $5 \frac{1^{\prime}}{3}$.
7. Gareel Doss (Valuation, 900 rs .)	7 rooms ; average $18 \frac{1^{\prime}}{}{ }^{\prime}$ by $7 \frac{1}{2}^{\prime} ; 3$ of tiled, and 1 of kutcha roofs ; mud walls, 10 feet high ; a tile shed, 293^{3} by 53^{3}.
8. Chainsookh (Valuation, 700 rs .)	12 rooms; $13 \frac{1}{4}^{\prime \prime}$ by $7 \frac{1}{3}^{\prime} ; 5$ of tiled roofs, 3 of which 2 storied, and 7 of kutcha; mud walls 10 feet high, in good order; a tile shed, 28^{\prime} by 5 年 $^{\prime}$.
9. Bisram \quad (Valuation, 250 rs. .	4 rooms ; 12^{\prime} by $7 \frac{3^{\prime}}{4} ; 2$ of tiles, and 2 of kutcha roofs; mud walls 9 feet high, in bad order; a tile shed, 12^{\prime} by 6^{\prime}.
10. Bindaram (Valuation, 200 rs .)	4 rooms; 11^{\prime} by $81^{\prime \prime} ; 2$ of tile and 2 of kutcha roofs; mud walls 9 feet high, in bad order; a tile shed, $13 \frac{1}{2}^{\prime}$ by 6^{\prime}.
11. Sulsookh (Valuation, 425 rs.)	10 rooms; average $10 \frac{1^{\prime}}{3}$ by $5 \frac{1^{\prime}}{}$; 4 of tiles, 1 of which has 2 stories, and 6 of kutcha roofs, 1 of which also has 2 stories; mud walls, 12 feet high, in fair order; and shed, $17 \frac{3^{\prime}}{}{ }^{\prime}$ by 6^{\prime}.
12. Goordial (Valuation, 600 rs .)	7 rooms ; average 111_{2}^{\prime} by 7^{\prime}; 3 of tiles and 4 of kutcha roofs; mud walls, 9^{\prime} high, in fair order; a tile shed, $23^{1^{\prime}}$ by 6^{\prime}.
13. Shew Lall (Valuation, 300 rs .)	5 rooms; $17 \frac{1^{\prime}}{}$ by $7 \frac{1^{\prime}}{}{ }^{\prime}$; 1 of kutcha, 4 tiled roofs; mud walls, 9 feet high, in fair order; 1 tile shed, 23^{\prime} by 6^{\prime}.
14. Kunhee (Valuation, 350 rs .)	10 rooms; 163^{\prime} by $7^{\prime} ; 4$ of tiled, and 6 of kutcha roofs; mud walls, about 10^{\prime} high, in fair order; front pillars of kutcha pukka; a tiled shed, $29 \frac{1}{2}^{\prime}$ by 6^{\prime}.
15. Shewpersaud ... (Valuation, 30 rs .)	1 room; $14 \frac{1^{\prime}}{3}$ by 53^{\prime}; kutcha roof; mud walls, $9 \frac{1}{2}$ feet high, in bad order.
16. Sollah ... (Valuation, 50 rs .)	6 rooms; average 123^{\prime} by $6^{\prime} ; 2$ of tile and 4 of kutcha roofs; also 2 sheds, kutcha roofs, supported on wooden posts, 15^{\prime} by 15^{\prime}, and ${ }^{2}$ grass shed, 20^{\prime} by 6^{\prime}; mud walls, 9 feet high, in bad order.
17. Koosall (Valuation, $100 \mathrm{rs} .{ }^{\text {.. }}$	15 rooms; average $11 \frac{1}{2}^{\prime}$ by $6 \frac{1}{2} ; 4$ of kutcha and 11 of tile roofs; mud walls, $\mathbf{7}^{\prime}$ high, in bad order.
18. Mookeembeg ... (Valuation, 227 rs.)	1 room; 12^{\prime} by 52^{\prime}; kutcha roof ; 2 tile sheds, 15^{\prime} by $11 \frac{3}{3}^{\prime}$; mud walls; one wall (14^{\prime} by 10^{\prime} hy $1 \frac{1}{2}^{\prime}$) kutcha pukka, in bad order.
19. Piarree (Valuation, 40 rs .)	7 rooms; average 93^{\prime} by $6^{\prime} ; 1$ of tiled, 6 of kutcha roofs; nud walls, 7^{\prime} high, in bad order.
20. Boodhoo Khan (Valuation, 350 rs .)	3 rooms; average $21 \frac{3}{4}^{\prime \prime}$ by $7 \frac{3}{4}^{\prime} ; 1$ of kutcha, 2 tile roofs; mud walls, 8^{\prime} high, in bad order.
21. Buldeo and Niwazee ... (Valuation, 175 rs.)	2 rooms; 11' by 64'; kutcha roofs; a tiled shed, 163^{\prime} by $6 \frac{1}{2}^{\prime}$; mud walls, 9^{\prime} high, in bad order.

Remarks by the Committee.

843 superficial feet, at 10 rs. per 100 , equal to $84 \mathrm{rs}$.4 a .; labour, at 3 rs ., 25 rs .5 a .

No property, only ground.
1,096 superficial feet, at 8 rs . per 100 , equal to $87 r s .10 a$; labour, at $2 r s .8$ a., 27 rs. 5 a.

1,387 superficial feet, at $12 r \mathrm{~s}$. per 100 , equal to 166 rs ; labour, at 3 rs ., $41 r s .9$ a.
1,643 superficial feet, at 16 rs . per 100 , equal to 262 rs .14 a ; labour, at 4 rs., 65 rs. 11 a.

465 superficial feet, at 10 rs . per 100 , equal to $46 \mathrm{rs}$.8 a .; labour, at 2 rs ., 9 rs. 5 a.
$453 \frac{3}{4}$ superficial feet, at 10 rs . per 100 , equal to 45 rs .5 a.; labour, at 2 rs., 9 rs.
750 superficial feet, at 15 rs . per 100 , equal to 112 rs .8 a.; labour at 4 rs ., 30 rs.

805 superficial feet, at 10 rs . per 100 , equal to 80 rs .8 a.; labour, at 3 rs ., 24 rs.
787 superficial feet, at 7 r s. per 100, equal to 55 rs .; labour, at 2 rs , 15 rs 12 a.
1,289 superficial feet, at $12 \mathrm{r} s$. per 100, equal to 154 rs. 10α; labour, at 3 rs ., 38 rs .10 a.

82 superficial feet, at 15 rs . per 100 , equal to 12 rs .4 a ; labour, at 2 rs ., $1 r .10 a$.
535 superficial feet, at 6 r s. per 100 , equal to $32 r s .2 a$; labour, at $1 r$. 8 a., 8 rs .

1,121 superficial feet, at 7 rs . per 100, equal to 78 rs .7 a ; labour, at 2 rs ., 22 rs. 6 a.
Valuation, 150 rs ; labour, 50 rs.

409 superficial feet, at 7 rs. per 100 , equal to 28 rs .10 a ; labour, at 2 rs ., $8 r s$.
498 superficial feet, at 12 rs . per 100 , equal to 59 rs ; labour, at 3 rs ., 14 rs .15 a .
175 superficial feet, at 15 rs . per 100 , equal to 26 rs .4 a.; labour, at 2 rs ., 3 rs .8 a.

Names of and Valuation by Owners.	Description.
22. Gungoo (Valuation, 100 rs.$)$	1 room; $13 \frac{1}{2}^{\prime}$ by $8 \frac{1}{4}^{\prime}$; kutcha roof; a tile shed 15^{\prime} by $12 \frac{3^{\prime}}{4}$; mud walls, 9^{\prime} high, in bad order.
23. Bukha... (Valuation, 200 rs .)	7 rooms; average $14 \frac{11^{\prime}}{}$ by $6 \frac{1}{4}^{\prime} ; 1$ tiled, and the rest kutcha roof; one 2 storied; mud walls, 10^{\prime} bigh, in bad order.
24. Joogrol (Valuation, $100 r s$. .	7 rooms; average $16 \frac{1_{4}^{\prime}}{4}$ by $7 \frac{3_{2}^{\prime}}{2} ; 3$ of tiled and 4 of kutcha roofs ; mud walls, 9^{\prime} high, in bad order.
25. Puchkowree (Valuation, 40 rs .)	3 rooms; 10^{\prime} by $63_{3}^{\prime \prime} ; 1$ of grass 2 storied, and 2 of tiles; also a shed 5^{\prime} by 43^{\prime}; mud walls, 9^{\prime} high, in bad order.
26. Jemadar Fakeera (Valuation, $65 r s$.)	2 rooms; $15 \frac{1^{\prime}}{4}$ by 8^{\prime}; kutcha roofs, and a grass shed; mud walls, 9^{\prime} high, in bad order.
$\begin{aligned} & \text { 27. Heera } \\ & \text { (Valuation, } 40 r s . \text {) } \end{aligned}$	2 rooms; $18 \frac{1^{\prime}}{}{ }^{\prime}$ by $7 \frac{1^{\prime}}{}$; tiled roofs; mud walls, 8^{\prime} ligh, in fair order.
28. Ramdial (Valuation, $60 r s$.)	3 rooms; average $18 \frac{2}{2}^{\prime}$ by $7 \frac{3}{3}^{\prime}$; ditto, ditto ...
29. Bhowanee	2 rooms; $10 \frac{9^{\prime}}{4}$ by 84^{\prime}; thatched roofs; mud walls, 5^{\prime} bigh.
30. Rutnee	1 room; $14 \frac{1^{\prime}}{}$ by 7^{\prime}; thatched roofs; mud walls, 5^{\prime} high; 2 sides grass on other 2, in bad order.
31. Ubdoo Raheem ... (Valuation, $16 r s$.)	4. rooms ; average 133^{3} by $64^{\prime} ; 3$ tiled roofs, one 2 storied and 1 kutcha roof; also 2 sheds $14 \frac{1}{4}^{\prime}$ by $7 \frac{1}{2}^{\prime}$; mud walls, 10^{\prime} high, in bad order.
32. Ullebux (Valuation, 300 rs .)	4 rooms ; 97^{\prime} by 6^{\prime}; 2 of 2 stories, tiled roofs, and 2 of kutcha; a small room 4 年 $^{\prime}$ by 5^{\prime}, with tiled roof; mud walls, 12^{\prime} high, in good order; also a shed $14 \frac{1}{2}$ by 7^{\prime}.
33. Uzmut Khan ... (Valuation, 200 rs .)	4 rooms; average 103^{\prime} by $73^{\prime} ; 2$ of kutcha, and 2 of tile roofs; mud walls, 8 feet high, in fair order.
34. Chadee and Gungadeen (Valuation, 120 rs .)	4 rooms; average 99^{\prime} by 63^{\prime}; 2 of kutcha and 2 of tiled roofs ; 2 stories high; mud walls, 12^{\prime} high, in bad order.
35. Mukha (Valuation, 60 rs.)	4 rooms; nverage 11^{\prime} by 7^{\prime}; kutcha roofs; mud walls, 9 feet high, in fair order.
36. Kurreem (Absent.)	1 room ; 159^{\prime} by 71^{\prime}; tiled roof; a tiled shed, 12^{\prime} by 6^{\prime}; mud walls, 8^{\prime} high, in bad order.

VOL. IIL

Names of and Valuation by Owners.	Description.	Remarks by the Committee.
37. Bhowaneedeen (Valuation, 200 rs.)	6 rooms; average 10^{\prime} by 53^{3}; kutcha roofs; mud walls, 9^{\prime} high, in fair order.	345 superficial feet, at 30 rs . per 100 , equal to $103 r s .8 a$; labour, at $5 r$ s., 17 rs. $4 a$.
38. Lall Mahomed (Valuation, 150 rs .)	7 rooms ; 8 $\frac{1}{2}^{\prime}$ by $6 \frac{1}{2}$; kutcha roofs ; mud walls, 9^{\prime} high, ditto.	386 superficial feet, at 20 rs . per 100 , equal to 77 rs .3 a.; labour, at 4 rs., 15 rs. 7 a.
39. Kurreemun (Valuation, $60 r s$.)	1 room; $15 \frac{1_{2}^{\prime}}{}$ by 7 ${ }^{\frac{1}{4}}$; kutcha roof; 2 tile sheds, $16 \frac{1^{\prime}}{}{ }^{\prime}$ by $6 \frac{1}{2}$; mud walls, 9^{\prime} high, ditto.	336 superficial feet, at 8 rs. per 100 , equal to $26 \mathrm{rs.14a}$; labour, at 2 rs ., $6 r s .11 a$.
40. Hoolassie (Valuation, 80 rs .)	2 rooms; $15 \frac{1}{4}^{\prime}$ by $10^{\prime} ; 1$ of tile, the other of kutcha roof, and mud walls; ditto, ditto.	305 superficial feet, at $8 r s$. per 100 , equal to 24 rs .6 a ; labour, at $2 r s ., 6 r s .1 a$.
41. Ubdoolla (Valuation, 500 rs.)	12 rooms; average $12 \frac{1}{2}$ ' by $7 \frac{1^{\prime}}{3} ; 4$ of tile, 8 of kutcha roofs ; mud walls, 12^{\prime} high, in fair order.	1,099 superficial feet, at 20 rs . per 100 , equal to 219 rs .12 a . ; labour, at $5 r s ., 54 r s .15 a$.
42. Thundee Mul (Absent.)	2 rooms; 17^{\prime} by 73^{\prime}; 1 tiled and the other thatched ; mud walls, 6^{\prime} high, in bad order.	263 superficial feet, at 5 rs . per 100, equal to 13 rs . 2 a.; labour, at $1 r .8 a ., 3 r s .15 a$. Gardener's house only.
43. Lallah (Valuation, 25 rs .)	1 room ; 1233 by $10 \frac{3^{\prime}}{}{ }^{\prime}$; kutcha roof; mud walls, about 6^{\prime} high, in bad order.	133 superficial feet, at 10 rs . per 100, equal to 13 rs .5 a.; labour, at 2 rs. 8 a., 3 rs. 5 a.

$\left.\begin{array}{cccl}\text { (Signed) } & \text { C. W. Hutchinson, Lieutenant, } & \text { (Signed) } & \text { C. Troup, Major, President. } \\ & \text { Executive Engineer, } & \text { (Signed) } & \text { T. Riddell, Captain, } \\ & \text { 6th Division, Ganges Canal. } & \text { (Signed) } & \text { G. R. Sidons, Captain, } \\ \text { (Signed) } & \text { T. Ashburnean, Brigadier, } & \text { (Signed) } & \text { R. Wroughton, Lieut., }\end{array}\right\}$ Members.

Attending the Committee-
(Signed) John Eliot, Lieutenant, Temporary Assistant, Qanges Canal.
(Signed) Geo. Sim, Lieuterant, Officiating Executive Engineer, 7th Division Public Works.

Survey Report of a Committee appointed by order of the Brigadier commanding the Station of Cawnpoor to Survey and Value certain Buildings and Property which come in the line required for the Ganges Canal through the Suddur Bazar and Cantonment.-Cawnpoor, 24th March, 1851.

SIXTH SECTION.

President-Major C. Troup.
Members-Captain G. R. Siddons, Captain T. Riddell, Lieutenant R. Wrovghton, Syud Nasir Ally Kinn, Deputy Magistrate.

Attending the Committee-
(Signed) Join Elot, Lieut., Temporary Assistant, Ganges Canal.
(Signed) Geo. Sim, Lieut., Offciating Executive Engineer, 7th Division, Public Works.

Proceedings of a Board of Valuation of Buildings and Property taken in the Thirty Feet Increase of Width of the Esplanades, Gauges Canal.

Cawnpoor, 24th May, 1853.

Attending the Board-
(Signed) Charles J. Hodgson, Lieut., Executive Engineer, 4th Division, Ganges Canal.
(Signed) Geo. Sim, Lieut., Officiating Executive Engineer, 7th Division, Public Works.
(Signed) T. J. Bradford, Lieut.-Col., C.B., President.
(Signed) T. Riddfll, Captain,
(Signed) G. G. Bowring, Captain (Signed) Stelfart Grabam, Lieut., (Signed) Nasir Ally,
(Sigued) T. Palmer, Brigadier-General, Commanding the Division.

Survey Report of a Committee appointed by order of the Brigadier commanding the Station of Cawnpoor to Survey and Value certain Buildings and Property which come in the line required for the Ganges Canal through the Suddur Bazar and Cantonment.-Cawnpoor, 26th March, 1851.

SEVENTH SECTION.

President-Major C. Trodr.
Members-Captain C. Boulton, Lieutenant R. Wrougeton, Lieutenant C. Warde, Syud Nasir Alli Khan, Deputy Magistrate.

Names of and Valuation by 0 wners.	Description.
1. Ramdeen (Valuation, 25,000 rs.)	12 rooms; average $193_{3}^{\prime \prime}$ by $10^{3^{\prime}}$; 3 of kutcha roof and the rest of tile; walls of mud, about $10 \frac{1}{2}$ feet high, and 3 sheds 14^{\prime} by $8 \frac{1^{\prime}}{4} ; 2$ of grass and 1 of tile, in bad order; also a temple containing 2 rooms; average 169^{3} by $9 \frac{1}{2}^{\prime}$; and a verandah, $45 \frac{1_{2}^{\prime}}{}$ by 7 尔' $^{\prime}$; pukka masonry, pukka plastered on both sides, and 2 stories high, total height 25 feet; roof pukka, and in very good order ; also a pulska kutcha well, diameter $3 \frac{2}{2}$ feet.
2. Nabab Roshunoordowleh (Valuation,)	24 rooms; average $16 \frac{7}{4}^{\prime}$ by $9 \frac{7^{\prime}}{4} ; 11$ of tile roof, and 10 of grass, and 3 with a frame of bamboos with no grass, \&c., on them; walls of mud, with the exception of 22 pillars, $2 \frac{1}{2}^{\prime}$ by $2 \frac{1}{2}^{\prime}$, which are of pulkka masonry, about 10 feet high; also 6 sheds, average 22^{\prime} by $10^{\prime} ; 3$ of tile, and 3 of grass, whole in bad order.
3. Ghoolamrussool and Shubratally (Valuation, 140 rs.$)$	1 room ; $188_{3}^{\prime \prime}$ by $7 \frac{1}{4}^{\prime}$; of kutcha roof; walls of mud, about 8 feet high, in bad order.
4. Ukburally (Valuation, 200 rs .)	2 rooms; average $12 \frac{k^{\prime}}{}{ }^{\prime}$ by $9 \frac{1^{\prime}}{}$; of tile roof; walls of mud, about $6 \frac{1}{2}$ feet bigh, in bad order.
5. Uzmutally \ldots... (Valuation, 150 rs .)	2 rooms; average 12^{\prime} by $7 \frac{1^{\prime}}{}{ }^{\prime} ; 1$ of tile roof, 2 stories high, and the other of tile roof.
6. Badoollah (Valuation, 175 rs .)	4 rooms ; average $8 \frac{1}{2}$ by $7 \frac{x^{\prime}}{}{ }^{\prime}$; 1 of kutcha roof, and 3 of tile, 2 stories high, walls of pukka kutcha masonry, 10 feet high, in good order.
7. Junglee and Budloo ... (Valuation, 35 rs.)	3 rooms; average 12 ' by 6 ; 1 of kutcha roof, 2 of tile; walls of mud, about 7 feet high, in bad order; foundations, 2 walls 12 feet, 12 fect loug, of kutcha pukka masonry.
8. Makhun (Valuation, 50 r.s.)	1 room; $16 \frac{5^{\prime}}{\prime}$ by 79^{\prime}; of tile roof; walls of mud, 4 feet bigh, in bad order.
9. Bhujjoo (Valuation, $100 r$ r.)	2 rooms; average $21 \frac{1}{2}$; of tiled roof; walls of mud, 4 feet high, in bad order.
10. Rumow (Valuation, 50 rs .)	1 room; 193^{\prime} by $7 f^{\prime}$; of kutcha roof; and a tile shed, 10^{\prime} by 6 ; walls, ditto, ditto.
11. Dabee ... (Valuation, 50 rs.)	1 room; 19^{\prime} by $7 \mathrm{I}^{\prime}$; of tile roof; and a tile shed, 5 ' by 4^{\prime}; walls, ditto, ditto.

Temple at 7,400 rs. ; labour, at $2,400 \mathrm{rs}$. ; 2,909 superficial feet, out-offices, at 10 rs . per 100 , equal to 290 rs ; labour, at 70 rs .

Stables, equal to $1,200 \mathrm{rs}$; out-offices, huts, \&c., 342 rs .; gateway, 125 rs .equal to $1,667 \mathrm{rs}$; labour, at 400 rs .

135 square feet, at $8 r s$, per 100, equal to $10 \mathrm{rs} .12 a$.; labour, at 2 rs ., 4 rs. $12 a$.
237 square feet, at 7 rs . per 100 , equal to 16 rs .9 .; Jabour, at 2 rs ., 4 rs . 12 a .
270 square feet, at 10 rs . per 100 , equal to 27 rs ; ; labour, at $2 \mathrm{rs} .8 a$., 6 rs. 12 a.
460 square feet, at 14 rs . per 100 , equal to 64 rs . Ga. ; lahour, at 3 rs ., 13 rs. $12 a$.

216 square feet, at $8 r s$. per 100 , equal to 17 rs .4 a.; labour, at 2 rs ., $4 r s .5$ a.

130 square feet, at 8 rs. per 100, equal to 10 rs .6 a ; labour, at 2 rs ., 2 rs .4 a.
279 square feet, at 8 r s. per 100 , equal to 22 rs .5 a. ; labour, at $2 r s$. , 5 r s. 8 a.
201 equare feet, at 8 rs . per 100 , equal to 16 rs .; labour, at $2 \mathrm{rs} ., 4 \mathrm{rs}$.
137 square feet, at $8 r s$. per 100 , equal to 11 rs ; labour, at 2 rs ., 2 rs. 12 a.

Names of and Valuation by Owners.
12. Bheekha (Valuation, 250 rs. .)
13. Moonnah and Ghussectah (Valuation, $250 r s$.)
14. Piarce ... (Valuation, \quad)
15. Mohun (Valuation, $300 r s$.)
16. Buldeo Sohoy ... (Valuation, $3,500 \mathrm{rs}$.)
17. Hoosainee (Valuation, 60 rs .)
18. Heengun \ldots (Valuation, 50 rs.)
19. Bhudee (Valuation, $3,000 r s$.)
20. Dumodur Doss $\begin{aligned} & \text { (Valuation, }\end{aligned}$

21. Moonna and Ghusseeta (Valuation,

$$
4,000 r s .)
$$

22. Gungadeen aud Budloo
(Valuation,
$1,000 r s$.
23. Kishun Sohoy and

Saligram.
(Valuation, 3,000 rs.)
24. Mujlis Roy $\underset{\text { (Valuation, }}{\substack{700 \\ \text { rs. }}}$
25. Suboochurn
(Valuation, $1,000 r s$.
26. Seeta Ram
(Valuation,
$3,400 \mathrm{rs}$.)

3 rooms; average $8 \mathbf{x}^{\prime \prime}$ by 8^{\prime}; 1 of kutcha roof, and the rest of 2 stories high; foundations of kutcha pukka masonry ; and walls of mud, in good order.
2 rooms; average 12^{\prime} by $10^{\prime} ; 1$ of kutcha roof, and the other of tile; also a tile shed, $11 \frac{1_{1}^{\prime}}{}$ by $7 \frac{1}{3}^{\prime}$; walls of mud, about 8 feet high, in good order.
2 rooms; average 69^{\prime} by $6 \frac{3^{\prime}}{}$; of tile roof; walls of mud, about 9 feet high, in fair order.

3 rooms; average $7 \frac{1^{\prime}}{3}$ by $5 \frac{1^{\prime}}{}$; 2 of tile roof, 2 stories high, and 1 of kutcha roof; a tile shed, 53^{\prime} by $5 \frac{l^{\prime}}{4}$; walls of kutcha pukka masonry, 10 feet high, in bad order.
1 room; $25 \frac{1}{2}^{\prime}$ by $24 \frac{1}{2}^{1^{\prime}}$; of pukka roof; walls, kutcha pukka masonry, 14 feet high, in good order; base pukka.
4 rooms ; average $13 \frac{1}{2}^{\prime}$ by $64^{\prime} ; 3$ of kutcha roof, 1 of tile; and a shed of grass, 8^{\prime} by 11^{\prime}; walls of mud, 9 feet high, in bad order.
2 rooms; average $8 \frac{1}{2}$ by $8 \frac{1^{\prime}}{4}$; of kutcha roof; walls of mud, 9 feet high, in bad order.

4 rooms; average 21^{\prime} by $10 \frac{1}{4}$; 3 of kutcha roof, 1 of tile, 2 stories high; walls of kutcha pukka masonry, $12 \frac{1}{2}$ feet high, in good order.
5 rooms; average 17^{\prime} by $111^{\prime \prime} ; 1$ of pukka roof, and the rest of tile ; 4 walls of one room and 2 of another are of pukka kutcha masonry, the rest of mud, 11 feet high; a second story of pukka roof, walls pukika kutcha 11 feet high, in half a room, all in fair order.
2 rooms; average 21^{\prime} by 181_{2}^{\prime}; of kutcha roof; walls of pukka kutcha masonry, $14 \frac{1}{3}$ feet high, in good order.
5 rooms; average 13^{\prime} by $8^{\prime} ; 4$ of kutcha and 1 of tile roof, in bad order; walls of pukka kutcha masonry, but 1 (30^{\prime} by 5^{\prime}) which is of mud ; a tile shed, 303^{\prime} by $9 \frac{3}{4}^{\prime}$; height of the rest walls about 18 feet.
1 roour ; $35 \frac{1}{\prime}^{\prime}$ by 191^{\prime}; of pukka roof; walls of pukka kutcha masonry, $14 \frac{1}{3}$ feet high, in good order.

1 room; $353^{\prime \prime}$ by 211^{\prime}; one-third of grass, onethird of pukka roof, 2 stories high, and onethird pukka roof only 1 story high; walls of kutcha pukka masonry, 15 feet bigh, in good order.
6 rooms; average 13^{\prime} by $9^{\prime} ; 4$ of kutcha roof and 2 of tile; a wall, 23^{\prime} by $8 \frac{1^{\prime}}{}{ }^{\prime}$, of pukka kutcha masonry, the rest of mud, in bad order.
5 rooms; average $153^{\prime \prime}$ by $7 \frac{3}{4}^{\prime} ; 2$ of tile roof, 2 stories high, and the rest of kutcha roof; walls of pukka kutcha masonry, 11 feet high, in good order; a grass shed, 204' by ${ }^{-1}$.

Remarks by the Committee.

277 square feet, at 18 rs . per 100 , equal to 49 rs .13 a .; labour, at 3 rs ., $8 \mathrm{rs} .4 a$.

321 square feet, at 8 rs. per 100 , equal to 25 rs .10 a . ; labour, at 2 rs .8 a., 8 rs.

175 square feet, at 12 rs . per 100 , equal to 21 rs . ; labour at 2 rs .8 a., 4 rs. 6 a.
200 square feet, at 30 rs . per 100 , equal to 60 rs ; labour, at 10 rs ., 20 rs .

Value, $2,000 \mathrm{rs}$; labour, 666 rs.

337 square feet, at 8 rs . per 100 , equal to 26 rs .15 a. ; labour, at 2 rs ., 6 rs. 12 a.
140 square feet, at 10 rs . per 100 , equal to 14 rs .6 a ; labour, at 2 rs ., 2 rs. 12 a.
Valuation, $1,560 \mathrm{rs}$; labour, 500 rs.

Valuation, 2,100 rs.; labour, 710 rs.

Valuation, 1,443rs.; labour, 480 rs.

Valuation, 260 rs ; labour, 70 rs.

Value, equal to $1,960 \mathrm{rs}$; labour, 650 rs.

Value, equal to $2,553 \mathrm{rs}$; labour, 850 rs .

700 square feet, at 40 rs. per 100 , equal to 280 rs ; labour, 75 rs .

Value, equal to 1,400 rs.; labour, 400 rs .
voL. III.
Names of and Valuation by
Owners. sheeram.
30. Gian Chund and Piran Sookh.
(Valuation, $15,000 \mathrm{rs}$.
31. Khemanund and Doongur Mul.
(Valuation, 1,000 rs.)
32. Jonahur Mul (Valuation,

$$
13,000 \mathrm{rs} .)
$$

33. Hursooskhroy and Ramkurrun.
(Valuation, 3,000 rs.)
34. Dyakishun (Valuation, $4,000 r s$.)
35. Bunseedhur (Valuation, .)
36. Seetaram
(Valuation, 2,000 rs.)
37. Moonna and Ghusseeta
(Valuation, 2,500 rs.)
38. Chamsookh and Bukhshyram. (Valuation, .)

2 rooms; average 28^{\prime} by 16^{\prime}; of pukka roof; a second story, 28^{\prime} by 11^{\prime}, of pukka roof, 11 feet high; walls of kutcha pukka masonry, 11 feet high, base of stone slabs, in good order.
3 rooms ; average $24 \frac{1}{2}{ }^{\prime}$ by $10^{\prime} ; 1$ of pukka and 1 of grass roof; 2 stories high; the third of pukka roof (1 story); walls of kutcha pukka masonry, 12 feet high; base of stone slabs.
3 rooms; average $20 \frac{1}{2}^{\prime}$ by $11 \frac{1}{4}^{\prime}$; of pukka roof; walls of pukka kutcha masonry, in good order; a grass shed, $28 \frac{1}{4}^{\prime}$ by 93^{\prime}; height 15 feet; from the side of the nullah the height is $26 \frac{1}{2}$ feet.
15 rooms; average 20^{\prime} by $10 \frac{x^{\prime}}{4}$; of pukka roof, but 1, which is of tile ; walls of kutcha pukka masonry, about 11 feet high; a grass shed 473^{\prime} by 8^{\prime}, all in good order.
1 tile shed, $73 \frac{1}{2}{ }^{\prime}$ by $14 \frac{x^{\prime}}{4}$, supported on one side on mud walls $11 \frac{1}{4}$ feet high, and on the other (8^{\prime}) pukka kutcha pillars $5 \frac{1}{8}$ feet high, in fair order.
8 rooms; average $20 \frac{1}{2}^{\prime}$ by 12^{\prime}; 5 of tile roof, 3 of which are 2 stories high, and the rest of pukka roof; 3 walls of one and 2 of another room are of mud, and the rest of pukka kutcha masonry; height, about $13 \frac{1}{2}$ feet; a tile shed 504^{\prime} by 18^{\prime}, all in bad order.
2 rooms; average $28 \frac{1_{2}^{\prime}}{}$ by $18 \frac{1_{2}^{\prime}}{}$; 1 of pukka roof, and the other of tile; wall of a room of mud, the rest of pukka kutcha masonry, about 131 $\frac{1}{2}$ feet high, in fair order.
3 rooms ; average 24^{\prime} by $12^{\prime} ; 2$ of kutcha roof, and the third of tile, but in very bad order; walls of kutcha pukka masonry, but 1 as in No. 33, the rest in good order.
8 rooms; average 14^{\prime} by $7 \frac{1}{4}^{\prime} ; 1$ of pukka, and the rest of kutcha roof; walls of kutcha pukka masonry, about 12 feet high, in bad order; 1 small dome, 4^{\prime} by 4^{\prime}, on the outside, and $12 \frac{1}{4}$ feet high of pukka kutcha masonry, and pukka plastered; also a grass shed, $15{ }^{2}{ }^{\prime}$ by 5^{\prime}.
3 rooms ; average 21^{\prime} by $9 \frac{1}{2}^{\prime}$; of pukka roof; one 2 stories high; walls of pukka kutcba masonry, about 15 feet high, in good order.
9 rooms; average $15 \frac{1^{\prime}}{}$ by $8 \frac{1}{2} ; 2$ of tile roof, and 1 of which is 2 stories high, and the rest of kutcha roof ; walls of mud, 10 feet high, but the foundations, which are of pukka masonry, as also the back wall of the house, 34^{\prime} by $9 \frac{1}{2}^{\prime}$, of kutcha pukka masonry, whole in bad order.
7 sheds ; average $25 \frac{1^{\prime}}{}$ by $11 \frac{1^{\prime}}{2} ; 1$ of tile and 6 of grass (in bad order); 5 supported on one side on mud walls 8 feet high, and on the other on bullies: and 2 un bullies only.

Remarks by the Committee.

Value, equal to $2,600 \mathrm{rs}$; labour, 800 rs .

Value, equal to $3,000 \mathrm{rs}$; labour, $1,000 \mathrm{rs}$.

Value, equal to $3,080 \mathrm{rs}$; labour, 900 rs .

Value, equal to 4,800 rs. ; labour, $1,600 \mathrm{rs}$.; owners state that they paid $6,000 \mathrm{rs}$. for the ground alone, and $9,000 \mathrm{rs}$. for their buildings.
Value, equal to 250 rs ; labour, 80 rs .

Value, equal to $3,000 \mathrm{rs}$; labour, 980 rs .

Value, equal to $1,200 \mathrm{rs}$; labour, 400 rs.

Value, equal to 800 rs ; labour, 225 rs .

Value, equal to 800 rs ; labour, 225 rs .

Value, equal to $1,500 \mathrm{rs}$; labour, 500 rs.

1,449 square feet, at 50 rs . per 100 , equal to 724 rs .8 a.; labour, 274 rs .

2,030 square feet, at 5 rs. per 100 , equal to 101 rs .8 a.; labour, $24 \mathrm{rs}$.8 a.

Names of and Valuation by Owners.	Description.
39. Seetulpersaud and Ubdoolkurreen. (Valuation, .)	2 rooms; average 15^{\prime} by $8 \frac{1^{\prime}}{}$; 1 of tile, and 1 of grass roof; walls of mud, 5 feet high, and a grass shed, 17^{\prime} by $10 \frac{1}{2}$, in bad order ; part of wall at the gate, about $12 \frac{1^{\prime}}{}$ by 7^{\prime}, and the foundations of that wall, of kutcha pukka masonry.
40. Jurakhun (Valuation $\boxed{5} 00$ rs .) (Valuation, 500 rs .)	1 wall of mad, 31 feet long, about 6 feet high, in bad order.
41. Kurreembuksh ...	1 tile shed, 10^{\prime} by 101^{\prime}; on one side one mud wall, and on the other of posts.
42. Byjnauth	1 tile shed, and 1 room, with kutcha pukka walls, 20^{\prime} by 103^{\prime}.

Remarks by the Committee.

382 equare feet, at 6 rs . per 100 , equal to 22 rs .14 a.; 234 cubic feet kutcha pukka masonry, at 4 rs. 8 a. per 100, 10 rs .8 a.; and 1 gateway, 15 rs ; labour, 13 rs.

Wall and grass shed, 5 rs.
Value, equal to $5 r s$. ; labour, $1 r$.
Value, equal to 200 rs ; labour, 60 rs . House close to Gyanchund's, and was first included in the valuation, $5,000 \mathrm{rs}$. , agreed on for that house; but as it is a separate property, 200 rs . have been decided to be given to Byjnauth, and only $4,800 \mathrm{rs}$. to Gyanchund.
(Signed)
C. W. Hutcemson, Lieutenant,
Exccutive Engineer, 6th Division, Ganges Canal.
(Signed) T. Ashburnham, Brigadier, Commanding the Station.
$\left.\begin{array}{ll}\text { (Signed) } & \text { C. Troup, Major, President. } \\ \text { (Signed) } & \text { C. Boulton, Captain, } \\ \text { (Signed) } & \text { Nasir Ally, } \\ \text { (Signed) } & \text { C. Warde, Lieut., } \\ \text { (Signed) } & \text { R. Wroughton, Lieut., }\end{array}\right\}$ Members.

Attending the Committee-
(Signed) J. Eliot, Lieutenant, Temporary Assistant, Ganges Canal.
(Signed) Geo. Sim, Lieutenant, Ofliciating Executive Engineer, 7 th Division Public Works.

A P PENDIX 0.

Ganges Canal Works.-Northern Division; by Captain A. G. Goodmyn, Executive Engineer.

ON BLOCK-SINKING.

The object of this paper, and of the tabular statement which accompanies it, is, the discovery of the law which regulates the expense of block-sinking for foundations, as far as the operations in the bed of the Solani teach.
2. The statement embraces a period of two years and four months, or from 1st April, 1848, to 31st July, 1850, and shows the result of block-sinking operations since my connection with the Northern Division Ganges Canal, as far as relates to the aqueduct proper, with the exception of sinking sixteen wells for the support of the steps at the flanks of the abutments of that work.
3. To render this statement complete, however, similar detail is required regarding the under-sinking of the blocks for the support of the curved revetments connecting the work in the bed of the river with that on the banks; and, as these blocks are of uniform size and shape, and both are such as are likely to be more generally adopted in this country than those of many of the very large blocks supporting the heary weight of the piers and abutments of the Solani Aqueduct, it is much to be desired that a similar record should, hereafter, include them.
4. Again, this statement should embrace the whole of the block-sinking operations in the bed of the Solani; but in it I have not noticed the labours of my predecessor, Lieutenant H. Yule, of Engineers, on account of the monthly progress reports of block-sinking, prior to my receiving charge, showing merely the depth of sinking remaining to be executed for each block. It is true that materials exist for supplying every information that can be desired on this point, Lieutenant Yule's records being most complete and lucid; but as the depths to which blocks were sunk varied greatly, and moreover the sinking of the same blocks was not continuous, the labour of compiling from these records a list which should show each month the progress on each block, with the mean depth at which that progress took place, involves the formation of an entirely new set of progress reports, and is a work greater than I am at present equal to.
5. One great difficulty in framing this statement has been to arrive at the true mean depths at which sinking was performed. This difficulty has beset me at the outset, and has not been overcome. As an exemplification of it, suppose, on the first of a month, a block was down 14 feet, and on the last day of the month 20 feet, and that the cost of sinking during the month was 132 rs. Now, in this case, the rate per running foot would be 22 rs ., the progress leing 6 feet; also the mean depth at which sinking was performed was 17 feet. In making my calculations I have used data similarly obtained. But it must not be supposed
foundation blocks

Blocks Nos 6, 7. 30 \&e. Total 8.

Pier Blocks $\mathrm{N}^{\text {os }} 40,41$ \&e. Total 112.

$22 \times 20-6.5 \times 5.5,4-297$
$22,20-6.5 \times 5.5 \times 4+1.83, \frac{1.23}{2} \times 16-323.9$

$$
\begin{aligned}
& 22 \times 2 c-6 \cdot 5 \times 5 \cdot 5,4+297 \\
& 22,20-6.5 \times 5 \cdot 5 \times 4+1.83, \frac{1.83}{2} \times 16-323.9
\end{aligned}
$$

$26 \times 22-6 \cdot 5 \times 8 \cdot 5 \times 4-351$
$26 \cdot 22-6 \cdot 5: 8 \cdot 5=4+2, \frac{2}{2}: 16-383$

Curtain Blo
Curtain Blocks Nos $37,38,49,50,259,260,271,372$

Scale, 16 Feet - Oue Inch.

N.B. The Gurtain Blorks brtween and including
$N^{\text {an }}$ ant and ins on the upstraun and down the left abuement. have their tops only hore represented in placr. Their walls are if equable thickness, as hare whown, and theis ends are vertical, bue their sides have a
batter of 1 in 8 .
Blocks Nos 9,11,13, \&e. Total 6. Blocks Nos 276,288,Total 2.

Curtain Blochs Nos. $52,65,68.81,8 \mathrm{kc}$.
Area $67^{\prime} .55^{\prime}$

Plan of Hlocks Nos 1. 1. 23, 261, 270

Blocks Nos $8,10.12 . \& c$ Total 12.
supl cent $2+c^{l}$

WEIGHTING FRAMES
 to facilitate
 SOLANI AQUEDUCT BLOCKSINKING.

Fig. 2
Enlarged Sretion and Elevation of portion if' bleck and weighting
frame afliaral.

Section of Cuiwater Block
Newing applicathen of wrightivel
fiance.

Sicale: sece tonth of an hach to a Frat.
that the cost of sinking the block from 14 to 17 feet was the same as that from 17 to 20 feet, or that, consequently, as far as the valuation of work goes, 17 feet is the correct mean.
6. In reality, the expense of sinking varies more nearly as the cubic contents of the crater caused by that operation, added to a certain amount of excavation from beneath the crater, or as the cubic contents of a portion of the block taken solid of the depth sunk, added to some multiple of the cube of that depth sunk, than in any other proportion I am aware of. But what this multiple of the cube of the depth is, can only be ascertained by considering each particular block.
7. For further exemplification, suppose progress as above stated to have occurred on a detached block 20 feet square, the soil to be moved being equal to the content of a crater whose sides run up from the foot of the block everywhere at an angle of 45°.

The cubic content of such a crater would be-

$$
\begin{aligned}
& 20 \times\left\{\begin{array}{l}
\text { area included in } \\
\text { circumference of } \\
\text { base of block. }
\end{array}\right\}+3 \frac{1}{3} \times 20^{3} .
\end{aligned}
$$

And the works executed on cach foot of sinking between 14 and 20 fect would be as follows :-

The number of cubic fect of the modulus, or supposed quantity of soil displaced, due to each foot of sinking being known, the cost of each foot is calculated, on that number, by simple proportion; the total number of cubic feet of the modulus being found by the expression; $6 \times 400+3 \frac{3}{3}\left(20^{3}-14^{3}\right)$ to be 19,920, and the total expense being known to be Company's rupees 132.
8. Now, from this it appears that the mean depth, as far as expense is concerned, is $17 \frac{1}{\frac{1}{2}}$ feet nearly, instead of 17 feet, and that the lower $2 \frac{1}{2}$ feet cost as much as the upper $3 \frac{1}{2}$ feet, on the whole monthly progress of the block in question.
9. By some such calculation greater accuracy in the statement of mean depths might undoubtedly have been obtained, but the work would have run out to a length that, with the limited time and means at my disposal, I could not pretend to follow.
10. The above example is wholly supposititious, and must not be taken as a guide for rates.
11. In the case of heavy bocks, i. f. those of 1 st, 2 nd , and 3 rd classes, and of the cutwater blocks of the 4 th class, the soil has been found at the sides of the craters at a somewhat steeper slope than in that of the long curtain blocks of the 4 th class; or rather, I bolieve, to speak more correctly, in the case of the latter the sand runs down the sides of the craters in a somewhat less steep slope than in the case of the former, owing, as I suppuse, to the greater rapidity with which the heavy blocks sink. What I mean to say is, that. in the case of the large blocks, the sand has not time to take the same angle of repose as with the small ones, and consequently the apparent disturbance in the vicinity is less.
12. The section of these craters of course varies with the proportions of clay and sand in the soil, but the following may be taken as average sections:

> 1st, 2nd, and 3rd Classes, and 4th Class Cutwater Blocks.

Section.

Section.

The sectional areas of these craters possibly vary from 220 to 280 square feet, but neither of these amounts adequately represents the true quantity of soil removed in block-sinking; this true quantity, when the circumferences of blocks are the same, varying inversely in some proportion of the weight to the base of the block, although the discovery of what that proportion is, exactly, is still a desideratum.
13. Any one who has watched the bubbling up of springs, throwing up as they do, when first opened, large quantities of the soil through which they pass, will, I think, agree, that, in estimating the craters as running from the feet of the blocks upwards at an angle of 45°, too great an allowance would not be made for the quantity of soil to be removed. My calculations, as far as they go, prove this; and unless even greater value is assigned to weight of blocks, in proportion to their bases, than I am disposed to allow, the conclusion appears quite sound that, in calculating the soil removed thus, the results are under, rather than over stated. As far as I can discover, no advantage results from the consideration of the above sections as shown in diagram. I give them merely to show that they do not, as might be supposed, afford from mere inspection data for estimating the quantity of soil removed. It must be remembered, also, that all that is
necessary is to fix a modulus which will afford results relatively correct; their being absolutely so or not, is not a matter of any practical importance.
14. Having premised thus much, a set of formulæ will follow, by the application of which to the several months' progress and expenditure, the value of the above-stated conclusions may be tested. It is, in fact, supposed that the quantity of soil removed is the same as would be excavated could the blocks be "laid in" dry, in a soil that would stand at an angle of 45°.

The expressions obtained are not the simplest possible algebraically, but are such, as, with the aid of good tables of squares and cubes, will, it is believed, give results with the least possible labour.

Let l be the length in any line of blocks, as a pier, taken up by one block.

b	"	breadth of the block.
d	depth sunk.	
s	$"$	space or interval between blocks.
n	$"$	number of blocks.

Thus-
For any number of
blocks, of uniform breadth
$\left.\begin{array}{l}\begin{array}{l}\text { blocks, of uniform breadth } \\ \text { and length in a continu- } \\ \text { ous line, other than the }\end{array}\end{array}\right\}$ the formula is, $\left\{\begin{array}{l}n(l+s) b d+(l+s) d \text { or } \\ n(l+s)\left(b d+d^{2}\right)\end{array}\right.$
end ones
For end blocks of uni$\left.\begin{array}{l}\text { form length and breadth, } \\ \text { terminating such con- }\end{array}\right\}$ tinuous lines $"\left\{\begin{array}{l}n \overline{\left(l+\frac{s}{2}\right) b d+\left(l+\frac{s}{2}\right) d^{2}+\frac{b}{2} d^{2}+\frac{2}{3}} d^{3} \text { or } \\ n \overline{\left(l+\frac{s}{2}\right)\left(b d+d^{2}\right)+\frac{b}{2} d^{2}+\frac{2}{3} d^{3}}\end{array}\right.$
$\left.\begin{array}{rl}\text { For any } & \text { single de- } \\ \text { tached block } & \text {............ }\end{array}\right\}$ $=\left\{\begin{array}{l}l b d+l d^{2}+b d^{2}+\frac{4}{3} d^{3} \text { or } \\ l b d+(l+b) d^{2}+\frac{4}{3} d^{3}\end{array}\right.$

When the lengths and breadths of blocks in a continuous pier are all uniform, then for the whole pier, including end blocks \qquad

$$
川 \quad\left\{\begin{array}{l}
(n-2)(l+s)\left(b d+d^{2}\right)+2\left\{\overline{\left(l+\frac{s}{2}\right)\left(b d+l^{2}\right)}+\right. \\
\left.\overline{\frac{b}{2} d^{2}+\frac{2}{3} d^{2}}\right\} \text { or } \\
d\left\{\overline{n(l+s)-s}(b+d)+b d+\frac{4}{3} d^{2}\right\}
\end{array}\right.
$$

Hence, when calculating cost of work at any intermediate stage of progress, if d represent the greater depth arrived at,
d
1

Then-
For any number of
blocks of an uniform
breadth and length, in a $\}$ the formula is, $n(l+s) \overline{b d+} \overline{d^{2}}-\binom{b d+b c^{2}}{1}$
continuous line, other
than the end ones)
For end blocks of uniform length and breadth terminating such line ...

$$
" \quad n\left\{\left(l+\frac{s}{2}\right) \overline{b d+d^{2}-\left(\begin{array}{c}
b d \\
1
\end{array}+\frac{b d^{2}}{1}\right)}+\frac{b}{2} d^{2}+\frac{2}{3} d^{\beta}-\left(\frac{b}{2} d_{1}^{p}+\frac{2}{3} d_{1}^{\beta}\right)\right\}
$$

$\left.\begin{array}{c}\text { For any single de- } \\ \text { tached block } \ldots\end{array}\right\}$
$\left.=, \quad\left(d-\frac{d}{1}\right)^{\bar{l}+(l+b)} \overline{(d+d}\right)+\frac{4}{3}\left(d^{3}-\frac{d^{3}}{1}\right)$

When the lengths and breadths of blocks in a continuous line are all uniform, then for the whole pier, including the end blocks
15. It now remains to examine how far this agrees with practice. Certain months have been taken as a test, quite at random, and the rates have been struck on the modulus thus obtained. In the comparison the cost of merely the labour of undersinking has been taken into consideration, as it is obvious that, when the total expenditure is not proportionate to the mere cost of labour of undersinking, the causes are foreign to the matter at present under consideration, which is how far this theory is supported by the results obtained from all blocks large or small, and whether it deals satisfactorily with the admitted difference of cost of sinking blocks of varied shape at varying depths.
16. May, 1848, is the first month examined. It may be proper to state that the calculations have in all cases been made with the utmost care (they are not inserted on account of their length), and that where great differences existed in the mean depths at which sinking was performed, the true quantity of work done has been estimated, as nearly as possible, by dividing the work into small portions, in which the variation in depth was less marked. By the aggregation of the results, obtained from these small portions, totals have been found, on which the rates have been struck. These rates are as follow :-
May, $1848\left\{\begin{array}{lllll}\text { 1st class } & 11 \cdot 93 & \text { annas per } & 100 & \text { c. f. of the modulus. } \\ \text { 2nd } & 7 \cdot 90 & " & " & " \\ \text { 3rd } & 11 \cdot 80 & " & " & " \\ \text { 4th } & 11 & 9 \cdot 78 & " & "\end{array}\right.$

The variation in rate here noticed is considerable, and it now remains to ascertain what causes exist affecting the rate in some classes more than in others.

Firstly : —
1st class blocks, $\frac{3,187}{6,733}$ or 0.473 of the whole number of workmen were employed at night.
2nd " " $\frac{2,365}{5,683}$ or 0.416
3 rd " " $\frac{784}{2,492}$ or 0.315
4th " " $\frac{767}{1,985}$ or 0.386

This varying proportion of men, employed by night on each class of blocks, may be a reason of difference of rate. Lieutenant G. Price, the officer in immediate executive charge of this work, is of opinion that work by night is a saving merely of time, and thinks with me that if possible it should not be resorted to, as being more expensive than work by day only. The difference is not material, however, and I do not assign to this first cause the variation in rate which I seek to explain.*

[^9]
Secondly:-

The effective surplus weight in proportion to the bases of the blocks in their average state of immersion, was :-

1st class, 572 lbs. to 1	square foot of area included in circumference of base of block.				
2nd	507	5	$"$	$"$	$"$
3rd ", 642	$"$	$"$	$"$	$"$	$"$
4th ", 552	$"$	$"$	$"$	$"$	$"$

That the varying proportion of weight to the area of the base has a very material effect on the cost of sinking is beyond dispute, but unfortunately no data exist by which the ratio of velocity of sinking to weight can be accurately determined.

Thirdly:-

And this consideration appears the most important of all in the present instance, the height, from whence the jham had to be worked, must be looked to. In the case of the 1 st and 3 rd class blocks, the masonry being 20 feet high, it mattered nothing at what average depth sinking had to be performed, as far as the labour of bringing up any given quantity of earth was concerned. Directly the block was built up from its first height of 12 feet, to its final height of 20 feet, every jham load was raised that height, and the jhamworker had to handle a staff 8 feet longer than before. The time required to work a jham, at the bottom of a block built up to a height of 20 feet, is about one-fourth more than when that block was only 12 feet high. Moreover the jham cannot be forced into the ground so deep as before; and, as the depth of water increases more and more of the contents of the jham are washed out during its passage upwards; so that the total labour of sinking when the block is 20 feet high, is to the same work when the block is only 12 feet high, as 3 to 2 nearly; or, to speak more correctly, the labour of bringing up any given quantity of soil under these two differing conditions is in this proportion, for it must not be forgotten, that, owing to difference of weight, the progress, as before stated, will be greater on any high block, for the same quantity of excavation, than on a low one of the same length and breadth. Now, in the case of the 2nd class blocks, $\frac{284}{682}$, or 0.391 , of the work was performed at a height of 12 feet, and, in the 4 th class block-sinking, $\frac{64}{676}$, or $0 \cdot 14$, was done under the same circumstances. If, then, correction, fairly due on account of different heights, be appliel, giving the workmen credit, as it were, for their work valued at the 12 -feet standard, the comparative rates on the modulus would be:-

1st		7.		
2nd	"	$6 \cdot 30$	"	"
3 rd	"	$7 \cdot 90$	"	"
4th	"	$6 \cdot 96$	"	"

It would be easy to show, that, by more accurate calculation of the variation caused by height of blocks, just at the point where the mean depth at which sinking was performed begins to exceed 12 feet, and where the depth of water has not yet materially increased, consequently where the contents of the jham are not materially lessened in their upward passage, these rates would approach each other still more nearly.
17. The next period taken was that of

$$
\begin{aligned}
& \text { May, 1849. }\left\{\begin{array}{l}
\text { 2nd class blocks, } 7.97 \text { per } 100 \mathrm{c} \text {. f. on modulus. } \\
\text { 4th }
\end{array} \text { (no curtain blocks) } 8.25 \text { per } 100 \mathrm{c}\right. \text {. f. on modulus. } \\
& \text { 2nd class, } \frac{5,103}{11,761}=0.434 \text { of the workmen were emploged at night. } \\
& \text { 4th " } \quad \frac{646}{1,370}=0.471 \quad "
\end{aligned}
$$

The effective surplus weight in proportion to the bases of the blocks, in their average state of immersion, was-

2nd class, 615 lbs. to 1 square foot of aren included in circumference of base of block. 4th ", 634 "
VOL. III.
18. These rates agree very nearly with each other; but to render the comparison quite fair, a correction, as before, has to be applied, although owing to a different cause; after which they may be placed beside those of May, 1848.
19. On 1st December, 1848, the number of men to each jham was reduced by Lieutenant Price from 4 to 3, and on 1st November of the same year the pay of beldars was lowered, by order of the Director of the Works, from 4 rupees to $3-8$ per mensem.

The mistri employed superintending the block-sinking asserts that three men work a jham quite as well as four; yet this is neither Lieutenant Price's opinion nor my own, although we agree that they perform nearly as much work as four. I have very little doubt that the mistri was influenced in his report by a desire to make it as agreeable as possible. Now-

The pay of a squad consisting of 1 tindal at 6 rupees per mensem and of 30 beldars at 4 rupees per mensem, was, before 1st November, 1848 Co.'s rupees 126

Do. do. when the beldars' pay was reduced to 3-8 per mensem, after 1st November, 1848

It appears that a saving of $\frac{15}{126}=\frac{5}{43}$ was made, on labour, by the Director's reduction, and nearly of $\frac{4}{}$ th by Lieutenant Price's reduction; the total saving being $\frac{5}{43}+\frac{1}{4}=\frac{63}{172}=0 \cdot 366$.
20. Therefore the same work which was done before 1st December, 1848, for one rupee, was done afterwards for $\frac{10}{17} \frac{9}{2}$ of a rupee.

Consequently the work which in May, 1849, cost 7.97 annas, would, in May, 1848, have cost $12 \cdot 57$ annas.
21. A reduction on account of the 12 -feet standard to which the work for May, 1848, was reduced, or-
${ }_{3}^{1} \times \frac{5.99}{778} \times 12 \cdot 57=2 \cdot 90$ annas, must be applied to 2 nd class blocks, and the proper reduction to the 4 th class blocks also, leaving the results for-

2nd class blocks $9 \cdot 67$ per 100 cubic feet on modulus.
4th class do. 9.74 do. do.
22. If, instead of taking the mistri's statement of saving of one-fourth, by the reduction of windlass men from 4 to 3 , it were taken at one-fifth, which is probably nearer the truth, the corrected rate on 2nd class sinking would be 8.77 and that on 4th class sinking nearly the same, affording a very close approximation to the reduced rates of May, 1848. As it is, however, the agreement is quite as near as could reasonably be expected, and is nearer than I had anticipated when I commenced the investigation.
23. May, 1850, has next been taken.

4th class 10.8 annas per 100 cubic feet on modulus.
$\frac{1}{2} \frac{2063}{5} \frac{3}{2}=0.455$ of the whole number of workmen were employed at night.
The weight on the area included in the circumferences of the bases of the blocks is 505 lbs . per square foot, in the average state of immersion.

This work would, in May, 1848, bave cost 17.04 annas per 100 cubic feet of modulus, and applying correction of $\frac{1}{3}$ of $\frac{22}{2} \frac{9}{3}$, of 17.04 , to effect a reduction to the 12 -feet standard of comparison, the rate becomes 11.53 per 100 cubic feet of the modulus.

24. For June, 1850.

4th class blocks: $11 \cdot 98$ annas per 100 cubic feet of modulus.

In the average state of immersion of the blocks, the weight on the area included in the circumferences of their bases was 613 lbs . to the square foot.

Applying corrections necessary, as before described, the rate becomes-
$\frac{15}{10} \times 1191$, less one-third of this amount (as all the blocks on which sinking was performed this month were at their full height), or 12.6 annas per 100 cubic feet on modulus.
25. For July, 1850.

4th class blocks: $13 \cdot 62$ annas per 100 cubic feet of modulus.
No work was done at night.
In the average state of immersion of the blocks, the weight on the area included in the circumferences of their bases was 351 lbs . only per square foot. This small proportional weight is due partly to a rise in the water level, this month.

Applying the corrections necessary, the rate becomes-
$\frac{2}{3}$ of $\frac{179}{10}$ of $13 \cdot 62=14 \cdot 33$ annas per 100 cubic feet of modulus.
26. The last three rates are for light curtain blocks with splayed bases. They agree well with each other, and appear to point to an error in the formulæ in calculating the section of soil removed, in the case of a line of blocks, at $b d+d^{2}$, representing a slope of 45° for the craters. It is very desirable that the expression $b d+3 d^{2}$, representing a slope of rather more than 33°, should be tried; perhaps the results thus obtained would be found to agree better with each other than those obtained from the formula I have made use of.
27. It appears that, on the Solani works-
0.135 of a tindal's day's work, or $\frac{1}{2 \frac{1}{2}}$ of his month's work, with 4.054 of a beldar's day's work, or $\frac{5}{3} 7$ of his month's work, is equal to the execution of 100 cubic feet of the modulus, including leave on Sundays; but when the proportion of effective weight to the bases of the blocks may be less than that which obtained in the case of the Solani works, the rate on the modulus must be increased in estimating the cost of labour on future works.
28. What has been stated above refers only to the labour of undersinking. It is necessary now, however, to see what the total charge on the modulus, including the cost of removing sand from the tops of blocks, of providing tools, and of defraying sundry trifling contingent expenses, attendant on the work, has been.

May, 1848.	(1st	clas	$23 \cdot 220$					This variation in rates is owing, in great measure, to the variable distances to which soil was transported.
	2nd	"	$17 \cdot 800$,	"	"		
	3rd	"	$21 \cdot 390$	"	"	"		
	4.th	"	$20 \cdot 010$	"	"	"		
May, 1849.	\{ 2nd	"	$17 \cdot 800$,	"	"		
May, 18	4th	"	$17 \cdot 590$	"	$"$	"		
May, 1850.	4th	"	$38 \cdot 350$	"	"	"		
June, 1850.	"	"	$25 \cdot 850$	"	"	"		
July, 1850.	"	"	$30 \cdot 512$	"	"			

29. Calculating for a large new work I should say that a rate, on the modulus, of 20 annas per 100 cubic feet would cover all expenses, out of which the expense of mere labour of undersinking would not exceed 9 amnas per 100 cubic feet; the remainder of the charge being for material, such as rope, oil for torches, \&c.; cost of removing sand from blocks; percentage for tools, and sundries. A great saving might be effected on the rate of 20 annas per 100 cubic feet, by the employment of chain instead of moonge rope. I believe the use of coir rope, even at Roorkee, would have been cheaper than that of mnonge.
30. On each block, between every two wells, and on the shore side of that block, an earth trough is placed. When operations were first commenced, prior to the earliest date over which this record
extends, ten men were told off daily to the service of this trough, whose duty it was to see that no accumulation of sand took place. This number was soon reduced to seven. On 1st December, 1848, when the reduction of men on each windlass from four to three took place, the number on each trough was reduced to six, and about four months later to five. The latest distribution for a four-well block is as follows:-

Four windlasses, at three men each			12
Two earth troughs, at five men each	\cdots	-	\cdots	.	.		10
							22

This is the smallest number of men that can work a four-well block with advantage, according to our latest experience.
31. Very much still remains to be done in determining accurately the relative cost of our block-sinking operations in the bed of the Solani; and I look on this paper merely as one step towards that end, involving as it does a satisfactory explication of the laws which regulate the expense of block-sinking. I have found difficulties in valuing the work start up at every step, in the shape of varying circumstances under which, at different periods, sinking was performed, and, until the true value of these disturbing causes is ascertained, absolutely accurate expressions cannot be entered in the formula of calculation. Again, until the formule are accurately settled, the effects of disturbing causes cannot be properly measured, and thus these two facts cause the question to vibrate like a balance, and each tends, by degrees, to bring the other to a state of rest.
32. From what has been put forth, it appears that when it is possible to avoid resorting to blocks with splayed bases, they should never be used, at any rate, if the soil through which sinking has to be performed is sandy. The success of such splayed blocks as regards economy, in a clayey soil, is still doubtful; though I think the balance of probability is against their succeeding as well as perpendicular-sided blocks even here. I do not, of course, allude to a case where a broad base is an especial desideratum. I merely say that the minimum width of a block at top being fixed, if that width admits of a perpendicular-sided block being sunk, and if the same width for the base is reckoned sufficient to ensure the stability of the superstructure, a perpendicular-sided block, as susceptible of being sunk far cheaper than a sloping one, is to be preferred; the difference of cost being calculable by the formulx given above. But a block, 6 feet wide at top, with sloping sides, may undoubtedly be sunk where a perpendicular-sided block of the same width at top will not go down at all; generally owing to its falling over on one side, from unskilful working. However, a line of blocks $8 \frac{1}{2}$ feet wide, with perpendicular sides, will be built at the same cost, and sunk cheaper than another of the same length, 6 feet wide at top and 11 feet wide at bottom. In the sloping block, the greater loss of weight, during partial immersion, has something to do with this result.

Blocks might always be advantageously designed in such a way that the weighting frames fixed on narrow ones should be applied with equal facility to wide ones. Three such frames as are used on the Solani Aqueduct block-sinking will bear a weight of $25,000 \mathrm{lbs}$. with safety; nor, with proper precautions, is there any danger in loading half this weight on one side of a block only.

A. G. Goodwrn, Lieut.,
Executive Engineer, Northern Division, Ganges Canal.

Roorkee, 26th August, 1851.

Report showing the Progress made, monthly, in sinking each Fodndation Bloci of the Solani Aqueddct Proper, from lst April, 1848, to 31st Jdly, 1850.

Roorkee, 26 th August, 1851.

Class	Date.	Number of Block.	Depth sunk during Month.	Arithmetical Mean Depth at which Sinking was each Block.	Product.	$\left\|\begin{array}{c}\text { Mean Depthi } \\ \text { st Which } \\ \text { sinking wos } \\ \text { perfor wed } \\ \text { struck } \\ \text { on whiole } \\ \text { Class,** }\end{array}\right\|$	Class.	Date.	Number of Block	$\begin{gathered} \text { Depth } \\ \text { sunk during } \\ \text { Montll. } \end{gathered}$	Arithmetical Mean Depth nt which Sinking was each Block.	Product.	Mean Depilh at Which Sinking was periormed atruck on whole Class.
	April,	22	$5 \cdot 10$	$2 \cdot 550$	$13 \cdot 005$		1st.	July,	14	$0 \cdot 82$	$13 \cdot 480$	$11 \cdot 053$	
	1848.	23	$9 \cdot 21$	$4 \cdot 605$	$42 \cdot 412$			1848.	15	$8 \cdot 58$	$17 \cdot 570$	$150 \cdot 750$	
		261	$6 \cdot 75$	$8 \cdot 835$	$59 \cdot 636$				16	$7 \cdot 71$	$16 \cdot 795$	$129 \cdot 489$	
		262	3.67	$10 \cdot 375$	$38 \cdot 076$				17	$7 \cdot 20$	$16 \cdot 710$	120.312	
		263	$0 \cdot 34$	$12 \cdot 040$	4.094				18	$7 \cdot 53$	$16 \cdot 295$	$122 \cdot 701$	
		268	$1 \cdot 00$	$11 \cdot 710$	$11 \cdot 710$				19	$6 \cdot 28$	$16 \cdot 000$	$100 \cdot 480$	
		269	$2 \cdot 00$	$11 \cdot 210$	$22 \cdot 420$				20	$4 \cdot 62$	$16 \cdot 000$	$73 \cdot 920$	
		270	$8 \cdot 00$	8.210	$65 \cdot 680$				21	$2 \cdot 62$	$12 \cdot 170$	$31 \cdot 885$	
			$8 \longdiv { 3 6 \cdot 0 7 }$		$2 \overline{257 \cdot 033}$	7-120			22	$2 \cdot 36$	$12 \cdot 960$	30.585	
			8) $36 \cdot 07$		$257 \cdot 033$	7.120			23	$0 \cdot 17$	$11 \cdot 725$	1.993	
			$4 \cdot 51$							10) $47 \cdot 89$		773•168	$16 \cdot 144$
	May,	23	$2 \cdot 43$	10.425	$25 \cdot 332$					4-79			
	1848.	261	7-62	$16 \cdot 020$	$122 \cdot 072$								
		262	$7 \cdot 95$	$16 \cdot 185$	$128 \cdot 670$								
		263	$7 \cdot 66$	$16 \cdot 040$	$122 \cdot 866$			Aug.,	14	4.62	$16 \cdot 200$	$74 \cdot 844$	
		264	$7 \cdot 96$	$16 \cdot 100$	$128 \cdot 156$			1848.	16	$1 \cdot 21$	$21 \cdot 305$	$25 \cdot 779$	
		265	$7 \cdot 41$	$15 \cdot 995$	$118 \cdot 523$				17	0.95	$20 \cdot 785$	19•745	
		266	5•79	14.935	$86 \cdot 473$				18	1.08	$20 \cdot 600$	$22 \cdot 248$	
		267	7-70	$16 \cdot 060$	$123 \cdot 662$				19	$1 \cdot 12$	19.700	$22 \cdot 064$	
		268	$8 \cdot 20$	$16 \cdot 310$	$133 \cdot 742$				20	$2 \cdot 08$	$19 \cdot 350$	$40 \cdot 248$	
		269	$7 \cdot 20$	$15 \cdot 810$	$113 \cdot 832$				21	$5 \cdot 24$	16.100	84.364	
		270	$9 \cdot 87$	$17 \cdot 145$	169.220				22	6.41	$17 \cdot 345$	111.181	
			$11 \overline{79 \cdot 79}$		1,272.548	$15 \cdot 948$			23	5.58	$14 \cdot 600$	$\underline{81 \cdot 468}$	
										9)28.29		$481 \cdot 941$	$17 \cdot 035$
										3.14			
$\begin{aligned} & \text { June, } \\ & 1848 . \end{aligned}$		15	$0 \cdot 54$	$13 \cdot 010$	$7 \cdot 025$								
		16	$0 \cdot 20$	$12 \cdot 840$	2.568								
		17	$0 \cdot 21$	$13 \cdot 005$	$2 \cdot 731$			Sept.,		1.08	$19 \cdot 050$	20.574	
		18	$0 \cdot 38$	$12 \cdot 340$	4-689			$1848 \text {. }$	17	$0 \cdot 60$	21-560	$12 \cdot 936$	
		19	$5 \cdot 84$	9-940	$58 \cdot 049$				18	$0 \cdot 72$	$21 \cdot 500$	$15 \cdot 480$	
		20	$7 \cdot 41$	9.985	$73 \cdot 988$				19	$1 \cdot 60$	$21 \cdot 060$	$33 \cdot 696$	
		21	7•39	7-165	$52 \cdot 949$				20	$1 \cdot 47$	21.125	$31 \cdot 053$	
		22	$6 \cdot 68$	$8 \cdot 440$	$56 \cdot 379$				21	$3 \cdot 14$	$20 \cdot 290$	$63 \cdot 710$	
		261	$2 \cdot 25$	$20 \cdot 955$	47-149				22	$1 \cdot 31$	$21 \cdot 205$	27-778	
		262	$1 \cdot 92$	$21 \cdot 120$	$40 \cdot 550$				23	$4 \cdot 47$	$19 \cdot 625$	$87 \cdot 723$	
		263	$2 \cdot 21$ 2.00	$20 \cdot 975$ 91.080	$46 \cdot 354$					$\overline{8114 \cdot 39}$		$\overline{292 \cdot 950}$	$20 \cdot 358$
		264	2.00	$21 \cdot 080$ 20.890	$42 \cdot 160$ 40.718								
		265 266	$2 \cdot 38$ $4 \cdot 25$	$20 \cdot 890$ 19.955	49.718 84.808					$1 \cdot 80$			
		267	$2 \cdot 17$	$20 \cdot 995$	$45 \cdot 559$								
		268	$1 \cdot 67$	$21 \cdot 245$	$35 \cdot 479$								
		269	$2 \cdot 67$	20.695	$55 \cdot 255$			Oct.,					
			17)50•17		$\overline{705 \cdot 410}$	14-060		1848.	14	$2 \cdot 27$	$20 \cdot 720$	$47 \cdot 054$	$20 \cdot 720$
			2.95										

[^10]

A. G. Goodwyn, Lieutenant, Executive Engineer, Northern Division, Ganges Canal.

Tabular Statement of the Cost of Undersinking Foundation Blocks of

Date of Sinking.	Class of Block	Detail of Blocks worked at, as numbered in Plan of Aqueduct Foundations.	Menn Superflcial Area embraced by Circum- ferences of Bases of Blocks.	Arithmetical Mean Depth at which Sinking Was performed.	Mean Munthly Progress.
April, 1848	1st	Nos. 22, 23, 261^{*} to 263*, and 268 to 270	Square Feet. 524•15	Feet.	Feet.
May,		Nos. 23, and 261 to 270 ...	$554 \cdot 02$	15.95	${ }_{7} 7.25$
June,	"	Nos. 15 to 22, and 261 to 269	$568 \cdot 77$	14.06	7.25 2.95
July,	,	Nos. 14 to 23	$570 \cdot 51$	16.14	$\begin{array}{r}\text { 2 } \cdot 79 \\ \hline\end{array}$
Aug.,	"	Nos. 14 and 16 to 23	$546 \cdot 04$	$17 \cdot 03$	$3 \cdot 14$
Sept., "	"	Nos. 14 and 17 to 23 ...	$544 \cdot 23$	$20 \cdot 36$	$1 \cdot 80$
Oct., ${ }^{\text {April, }} 18{ }^{\text {a }} 48$	2nd	No. 14 , \cdots, ${ }^{\text {a }}$	$500 \cdot 00$	$20 \cdot 72$	$2 \cdot 27$
May, .		Nos. $7,30,31,103,104,106$ to 110, 279, 280, 292, and 293 Nos. $30,31,103$ to 110, 215 to 222, $279,280,292$, and 293	$385 \cdot 88$ 421.13	$8 \cdot 95$	${ }^{7} 672$
June,		Nos. 103 to 110,215 to 222, 279, 280, 292, 日nd 293 ...	421.3 43	$9 \cdot 36$ 17.95	$6 \cdot 72$ 5.05
July,	"	Nos. 30, 31, 103, and 105 to 110	$401 \cdot 70$	$18 \cdot 30$	${ }_{1.67}$
Aug.,	"	Nos. 30 and 31	$360 \cdot 00$	$18 \cdot 96$	3.48
Sept.,	"	Nos. 30, 31, and 87 to 94	$437 \cdot 38$	$5 \cdot 27$	$7 \cdot 49$
Oct.,		Nos. 90 to 94	$440 \cdot 00$	$9 \cdot 42$	$3 \cdot 22$
Nov.,	"	Nos. 87 to 90	$440 \cdot 00$	$12 \cdot 36$	$2 \cdot 32$
Dec., ${ }_{\text {Jan }}$	"	Nos. 87 to 92	$440 \cdot 00$	$15 \cdot 14$	$5 \cdot 16$
Jan., 1849	"	Nos. 87 to 94	$440 \cdot 00$	$16 \cdot 27$	$2 \cdot 81$
Meb., "	"	Nos. 87, 90 to 94, and 199 to 206	$440 \cdot 00$	$6 \cdot 39$	6.35
March, "	"	Nos. 91 to 93,183 to 190, and 199 to 206 Nos. 126, 183, 185, 199 to 206, and 231 to 238	$440 \cdot 00$	$7 \cdot 09$	6.22
May	"	Nos. $126,183,185,199$ to 206, and 231 to 238 Nos. 126, 183 to 190,199 to 206,231 to 238 , and 247 to 254	440.00 440.00	9.93 13.00	$\begin{array}{r}8.97 \\ 7.78 \\ \hline\end{array}$
June		Nos. 126, 188 to 190, 233, and 247 to 254 ...	$440 \cdot 00$	$17 \cdot 88$	$4 \cdot 67$
April, 1848	3rd	Nos. 25, 27, 29, 273, 275, 277, 287, 289, and 291	$336 \cdot 00$	$6 \cdot 50$	10.57
May, "	"	Nos. 25, 27, 29, 273, 275, 277, 287, 289, and $291 . .$.	336.00	$15 \cdot 28$	$5 \cdot 00$
June,	"	Nos. 12, 273, 275, 277, 287, and 291 ...	336.00	$19 \cdot 58$	$3 \cdot 44$
Juy,	"	Nos. 12, 25, 27, and 29	$336 \cdot 00$	16.59	5.65
Aug. ${ }^{\text {a }}$			338.00	$19 \cdot 28$	4.03
April, 1848	4th	Nos. 9, 24, 26, 28, $70,109,111,274,276,278,286,288$, and 290	$184 \cdot 61$	8.14	6.58
May,	"	Nos. 24, 26, 28, 70, 102, 111, 214, 223, 274, 276, 278, 286. 288, and 290	174.96	11.36	$4 \cdot 79$
June,	"	Nos. 11, 13, 102, 111, 214, 223, 274, 276, 278, 286, 288, and 290	179.79	18.04	+.92
July,	"	Nos, 11, 13, 24, 26, 28, 37, 38,51 to 54, 63, 67, 68, 79, 102, and 111	$163 \cdot 70$	$11 \cdot 69$	3.64 5.71
Aug.,	.,	Nos. 24, 26, 29, 37, 38,51 to 54,67 to 69,83 to 85, 99, and $100 \ldots \ldots . .$.	124.73	$5 \cdot 93$	$5 \cdot 71$ 5.69
Sert.,	"	Nos. 24, 37, 38, 49, 51 to 54, 64 to 67, 80 to 83,86, 95 to 99, 102, 112 to 114, and 130	$122 \cdot 05$	$5 \cdot 34$	$5 \cdot 69$
Oct.,	"	Nos. 37, 49 to 54,64 to 69,80 to 82, 84 to 86, 95 to 100 , and 102	114.22	10.31	$2 \cdot 54$
Nov.,	"	Nos. 37, 49 to 52, $54,63,65,66,68,69,81,82,85,86,99$, and 100	$125 \cdot 0.5$	11.56	3.46
Dec., ${ }_{\text {Jan., }} 1849$	"	Nos. 97, 49, 50, 65, 66, 69, 81, 83 to 86, and 89 ... \ldots, \ldots, \ldots	$115 \cdot 40$	$13 \cdot 59$	$2 \cdot 31$
Jan., 1849	"	Nos. 37, 49, 50, 53, 64, 66 to $69,80,82$ to 86,95 to 99, 101, 112, 114 to 117 , and 130 to 133 ...	114.13	$9 \cdot 13$	$2 \cdot 38$
Feb., ,	"	Nos. 63, 64, 67, 68, 80, 82, 83, 85, 86, 95 to 99, 101, 112 to 117,131 to 133, 148, 198, and 207	$138 \cdot 74$	$10 \cdot 09$	$2 \cdot 92$
March, ,	"	Nos. 49, 50, 63 to 69, 83, 85, 97 to 101, 112 to 117, 130 to 133, 148, 182, 191, 198, and 207	$131 \cdot 11$	11.47	3.07
April, "	"	Nos. 49, 50, 63 to 69, 85, 86, 95,99 to 101, 113 to 116, 118, 130, 131, 148, 198, 207, 230, and 239	$148 \cdot 30$	12.78	2.66 7.40
May,		Nos. 118, 182, 191, 198, 207, 230, 239, 246, and 255	$160 \cdot 00$	13.40	7.40 2.02
July,	".	Nos. 80, 82, 96, 100, 101, 246, and 255 ...	$153 \cdot 3$ $107 \cdot 43$	15.48	$1 \cdot 94$
Aug.,		Nos. 80 to 82, 96, $100,101,112,113$, and 130	$112 \cdot 50$	$17 \cdot 18$	$1 \cdot 16$
Sept.,	"	Nos. 80 to 82, 96, 101, 112, 113, 115, and 130	$115 \cdot 18$	$18 \cdot 56$	2.59 1.44
Oct.,	"	Nos. 80, 82, 96, 101, 113, 115, and 130 ..	115-58	$20 \cdot 34$	1.44
Nor.,	"	No. $147, \cdots, \ldots$	$220 \cdot 00$	$5 \cdot 52$	11.05 $12 \cdot 13$
Dec., $\quad 1 \mathrm{~B}$		Nos. 147, 149, 150, 163 to 166, 179, and 180	103.99	6.89 17.48	$12 \cdot 13$ 8.43
Jan., 1850	",	Nos. 147, 149, 150, 163 to 166, 179, and 180 Nos. 149, 163, 164, and 179	$193 \cdot 38$ $\mathbf{2 1 2} \cdot 24$	17.48 21.57	1.63
April, "	"	Nos. 127 to 129, 143 to 146, 159 to 162,176 to 178, 192 to 194,208 to 210,224 to 226,240 to 242,256 to 258,271 , and 272	200•40	$5 \cdot 45$	$10 \cdot 84$
May, "	,	Nos. 127 to 129,144 to 146,159 to 162,175 to 178,192 to 194,208 to 210,224 to 226, 240 to 242,256 to 258, 271, and 272	202.52	12.07	$2 \cdot 36$
June,	"	Nos. 127 to 129, 144, 146, 159 to 162, 175 to 178, 181, 192 to 197, 208 to 213, 224 to 229, 240 to 245, 256 to 260,271 , and 272	$208 \cdot 17$	11.03	8.59 2.70
July, "	"	Nos. 181, 195 to 197, 211 to 213, 227 to 229, 243 to 245, 259, and 260 ...	208.11	16:53	2.70

[^11]the Solani Aqueduct, from 1st April, 1848, to 1st November, 1850.

jham, and 31 removing sand brought up by each jham. On lst November, 1848 , the pay of beldars was reduced to 3 rs. 8 a. On lat reduced about 4 months later to 2λ. This statement, however, as far as the removal of sand is concerned, must be received with any general notice like the present.

APPENDIX $\dot{\text { P }}$

Table of Depressions of the Solani Aqueduct Arches on removing Centerings．

No． 1 Arch．			No． 2 Arch．			No． 3 Arch．			No． 4 Arch．			No． 5 Arch．		
Level Points．	Sinking．	Average．	Level Points．	Sinking．	Average．	Level Points．	Sinking．	Average．	Level Points	Sinking．	Average．	Level Points．	Sinking．	Average．
1	Feet． 0.095	in io	1	Feet． 0.115	$\begin{aligned} & \text { in } \stackrel{\circ}{\circ} \\ & \stackrel{\text { in }}{\stackrel{\rightharpoonup}{3}} \end{aligned}$	1	Feet． $0 \cdot 145$		1	$\begin{aligned} & \text { Feet. } \\ & 0 \cdot 090 \end{aligned}$	$$	1	$\begin{aligned} & \text { Feet. } \\ & 0 \cdot 140 \end{aligned}$	
2	$0 \cdot 200$		2	0.215		2	0.265		2	$0 \cdot 180$		2	$0 \cdot 225$	
3	$0 \cdot 110$		3	0.115		3	$0 \cdot 160$		3	0.085		3	$0 \cdot 105$	
4	$0 \cdot 105$		4	0.085		4	$0 \cdot 155$		4	0.090		4	$0 \cdot 120$	
5	$0 \cdot 175$		5	0.195		5	0.270		5	$0 \cdot 180$		5	$0 \cdot 190$	
6	0.095		6	$0 \cdot 110$		6	$0 \cdot 160$		6	$0 \cdot 095$		6	$0 \cdot 200$	
7	$0 \cdot 005$		7	0.095		7	$0 \cdot 145$		7	0.095		7	$0 \cdot 115$	
8	$0 \cdot 175$		8	0.185		8	0.265		8	$0 \cdot 175$		8	$0 \cdot 185$	梁合
9	0.095		9	0.005		9	0.150		9	$0 \cdot 095$		9	0.085	
10	$0 \cdot 110$		10	0.085	$\begin{aligned} & \dot{\circ} \dot{0} \\ & \vdots \vdots \end{aligned}$	10	0.145	$\vdots:$	10	0.095	－ 0	10	0.125	
11	$0 \cdot 175$		11	0.185		11	0.250		11	0.175		11	0.175	
12	0.095		12	$0 \cdot 100$	$\text { 若 }=$	12	$0 \cdot 155$	$\frac{\Phi_{1}}{6}=$	12	$0 \cdot 095$	呂 $=$	12	$0 \cdot 080$	
13	$0 \cdot 110$		13	0.090		13	0.155		13	0.095		13	$0 \cdot 115$	品
14	0.175		14	0.190	$\begin{aligned} & \text { 영 } \\ & \text { 우응 } \end{aligned}$	14	0.260	$\begin{aligned} & \text { 였응 } \end{aligned}$	14	0.175	웅응	14	$0 \cdot 165$	우ㅇㅡㅡㅇ
15	0.095	\％	15	0.095	$\begin{aligned} & \stackrel{8}{8} \\ & 50 \\ & 5= \end{aligned}$	15	$0 \cdot 160$	$\begin{aligned} & 5 \\ & 60 \\ & 60.0 \end{aligned}$	15	0.095	$\begin{aligned} & \stackrel{0}{0} \\ & 00 \\ & 00 \end{aligned}$	15	0.080	\％
16	0．105	㫛	16	0.090		16	$0 \cdot 165$		16	0.095		16	$0 \cdot 105$	号＝
17	$0 \cdot 185$	惖	17	0.185	$\frac{50}{5}=$	17	0.280		17	0.175		17	0.180	甼
18	0.095		18	$0 \cdot 105$	品	18	$0 \cdot 170$	品	18	0.095	${ }_{0}$	18	$0 \cdot 085$	品
19	$0 \cdot 110$	$\begin{aligned} & \text { 品 } \\ & \text { 苞 } \end{aligned}$	19	0.105		19	$0 \cdot 165$		19	0.095	＝	19	0.110	
20	0.190		20	0.205		20	0.285	容＝	20	$0 \cdot 170$	$\begin{aligned} & \text { ab } \\ & \text { © } \\ & \text { © } \end{aligned}$	20	$0 \cdot 180$	
21	0.095		21	0.115		21	$0 \cdot 180$	$\begin{aligned} & \text { 呂 } \\ & \text { 号 } \\ & \text { 品 } \\ & \text { 品 } \end{aligned}$	21	0.095		21	0．095	
22	0.115		22	0.095		22	$0 \cdot 170$		22	0.095	号	22	$0 \cdot 125$	
23	$0 \cdot 200$		23	0.200		23	$0 \cdot 285$		23	$0 \cdot 175$		23	$0 \cdot 200$	
24	0.105		24	$0 \cdot 105$		24	0．190		24	0.090		24	$0 \cdot 100$	
25	$0 \cdot 120$		25	0.085		25	0．165		25	0.095		25	0.120	
26	0.205		26	0.195		26	0.280		26	$0 \cdot 185$		26	0.215	
27	$0 \cdot 100$		27	0.110		27	0．170		27	0.090		27	0.110	
28	0.135		28	0． 100		28	$0 \cdot 160$		28	$0 \cdot 105$		28	0.140	
29	0.225		29	0.185		29	0.270		29	0.195		29	0.235	
30	$0 \cdot 115$		30	$0 \cdot 105$		30	0.145		30	$0 \cdot 085$		30	0.115	

PIAN SHEWLNG THE POINTS ON THE HAUNCHES AND CROWN OF
THE SOLANI AQLEDUCT ARCHES AT WHICH THE AMOUN'I OF DEPRESSION WAS MEASURED.

PLAN SHEWING THE POINTS ON THE HAUNCHES AND CROWN OF THE SOLANI AQUEDUCT ARCHES AT WHICH THE AMOUN'T OF DEPRESSION WAS MEASURED.

APPENDIX Q.

Estimate in Abstract of the Works on the Ganges Canal, 1850.

First Division, from Canal Head to the 24th Mile.

HS: A. P.

$2 n d$ Division, from the 24 th to the 110 th Mile.

Excavation of canal channel and miscellaneous earthwork					17,04,788	2	9
7 masonry falls, with rajbuha heads	6,08,955	8	4
7 masonry locks, with rajbuha heads and mills.					1,30,519	7	2
Regulating bridges over the main and Futtigurh branch					26,405	3	0
26 masonry bridges			3,41,145	5	11
Abutments for a suspension-bridge						..	1,664	0	0
6 masonry ghats to be attached to bridges on high-roads					26,740	9	0
3 masonry outlets				33,608	10	9
14 drains for carrying rajbuhas under				\ldots	4,900	0	0
Workshops at Munglour Limesheds at ditto			1,925	7	2
	721	1	7
3 pukka wells	\ldots	1,898	12	3
9 1st class chokies			11,043	7	6
27 2nd class ditto	\ldots	7,297	11	9
86 mile-stones				4,300	0	0
35 inscription tablets 5 per cent. contingencies	\ldots	-	...		525	0	0
	\cdots	1,45,321	14	9

3rd Division, from the 111th to the 180th Mile.

Excavation of canal channel and lock and escape channels				
Bolundshuhur branch and main regulating bridges ..				
Koel				
Cawnpoor and Etawah branch regulating bridges				
2 masonry falls, with rajbulua heads				
2 masonry locks, with rajbuha heads and mills				
23 bridges		
2 escapes	-*
Workshops	
3 pukka wells	...	\cdots
5 1st class chokies
22 2nd class chokics				
70 mile-stones	
31 inseription tablets		...		
5 per cent. contingencies		

Total of 3rd Division

$7,00,169$	15	3
23,183	7	5
20,571	0	3
22,625	8	11
49,819	11	10
29,000	0	0
$\mathbf{3 , 2 2 , 5 0 4}$	13	3
10,325	10	10
1,997	11	10
964	15	6
7,132	5	1
7,489	6	4
$\mathbf{3 , 5 0 0}$	0	0
465	0	0
$\mathbf{5 9 , 9 8 7}$	7	7

30,51,760
511

4th Division, 181st to 280th Mile, Cawnpoor Branch.

Excavation of canal channel and miscellaneons excavations					$\stackrel{\text { HS. }}{4,96,037}$		P.
32 bridges, one with fall of 2 feet in flooring			\ldots	\ldots	$3,01,516$	7	5
1 lock with rajbuha head, \&c.			15,750	0	0
2 escapes	3,527	1	5
2 inlets	\cdots	...	2,846	9	4
Workshops 1 purka well	2,558	14	0
	383	13	7
	12,637	9	4
8 1st class chokies 23 2nd class chokies	\ldots	...	\ldots	\ldots	8,216	6	3
100 milestones	5,000	0	0
32 inscription tablets 5 per cent. contingencies	480	0	0
	42,447	11	9
		of 4th Div	ision		

Etawah Branch, 5th Division, 198 Miles.

Excavation of canal channel and escapes 66 bridges, 1 with fall of 3 feet on flooring			\ldots	6,03,869 11	5
				5,38,362 13	4
Lock with rajbuha head,			16,250 0	0
3 escapes	4,950 6	1
Workshops	2,558 14	0
1 pukka well	400	0
Locks, buildings, \&c., at terminus		...	\ldots	86,724 0	8
16 1st class chokies 50 2nd class chokies	\ldots	25,275 2	8
	\ldots	17,861 11	6
198 milestones	\ldots	9,900 0	0
67 inscription tablets 5 per cent. contingencies	1,005 0	0
	65,357 14	2

Cawnpoor Branch, 6th Division, 281st Mile to 349th Mile.

Excavation of canal channel and escapes			\ldots	...	1,95,142	8	
25 bridges	-	,		1,87,708	15	
2 escapes	\cdots	4,023	3	
Workshops	2,661	7	
1 pukka well	\ldots	400	0	
Locks, buildings, \&c. at the terminue and through city of Camapoor						...	1,60,860	9	
6 1st class chokies	9,719	6	
20 2nd class chokies	7,755	3	
69 milestones	3,450	0	
32 inscription tablets	\ldots	480	0	0
5 per cent. contingencies	\ldots	28,610	1	

Rs. A. P.

8,91,402 $7 \mathbf{9}$

Futtigurh Branch.

Amount of the original estimate	\ldots	\ldots	\ldots	\ldots	\ldots	$6,22,540$	0	0	
Add for 4 masonry falls	\ldots								
Add for 54 rajbuha heads and inlets	\ldots	\ldots	\ldots	\ldots	\ldots	$1,20,000$	0	0	
5 per cent. contingencies	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	34,830	0	0

APPENDIX Q.]

Bolundshuhur Branch.

Koel Branch.

RECAPITULATION.

GENERAL INDEX.

A.

Abbott, Major, i. 26.
Aboo Khan, plan of canal by, i. 7.
Aboo's canal, escape at, i. 194, 212, ii. 115 ; purpose of, $i b$. ; diagram of, 122 ; disposition of slopes and works at, ib.
Abrupt contact of torrent with Renipoor super-passage avoided, ii. 69.
Abstract of expenditure, i. 73.

- works from Ranipoor to Rutmoo torrente, i. 183.
- works from Roorkee to Belra, i. 204.
- of canal works, iii. l.
— works and cubic contents, iii. I.
- masonry, iii. 2.
——kutcha bricks, iii. 4.
- cost of bricks, iii. 4.
- condensed, showing extent of brickmaking in Northern division of Ganges canal works, iii. 19.
— lime furnished to works, iii. 21.
—— cost of materiale in Northern Division, iii. 22.

Abstraction of water from Ganges, i. 45 ; for Etawah branch, 198.
Abutment (Solani masonry aqueduct), protection of, ii. 459.
Acacia catechu, ii. 114.
Accommodation, works of, ii. 280.
Accountant of works, i. 74.
Account-books, forms or, iii. 223-232.
Accounts, contractors', results of, iii. 3.

- proposed system of, by Major Baker, i.

71 ; ndvantages of, 72.
_- quarterly system of, i. 74.
——rulee regarding, i. 74.
Adda, i. 100.
Administration, changes of, is 37.
Adriatic, i. 101.
Afghanistan, i. 29 ; return of ermies from, 39.
Agogne river, i. 103.
Agra, i. 42, 44, 46, 48, 122.

- Ganges navigable at, i. 2 f.
sandstone, ii. 102; cut-water capped
with, ib.
- quarries, ii. 379.
- government, orders issued by, i. 29 ; farourable to canal works, 32 ; directions isbued to, 63 ; views of, 80 .
Agreement paper, form of, iii. 128.
Agricultural Irainge, ii. ag ; modification of rudest kinds of, if.
Ahneea river, i. 321 ; length of, to junction with Rincle, 343 ; rise of, ib.
Aima, village of, i. 285 ; bridge at, 293.
Ainalie's brick-making machine abandoned, iii. 15 .

Ajmuthpoor, village of, i. 289.
Alrabad, town of, i. 249.
Albino, Serio river at, i. 103.
Alignement (Ganges canal) in Ist division, i. 85; detail of, 123; through Bolundshubur, 223; to Simra, 230; angle of, ii. 29.

- lower (Rutmoo), ii. 32; tangential points of, $i L_{\text {. ; }}$ bridge of cross-communication at tangential point of, ib.
- laying down the, in canal channel, ii. 538.

Allahabad, i. 26, 33, 34, 44, 45, 47, 48, 53; establishment and discontinuance of watergauge at, 23; proposed branch of canal to, cost of, 28; letter dated at, 30 ; projects for canal to, 33; extension of main line of canal to, 34; line from Hurdwar tested, 82; survey at, 298. Vide Cawnpoor.
Allan Sahib ka Poorwa, cut from, to Sookutpoor, 283.
Allen, Lieut, ii. 328; presence of, at Roorkee, 336.

Alligurh, i. 92, 198, 201, 228, ii. 107; road from, to Bolundeluhur, i. 224 ; fort of, 228; traffic between, and Cawnpoor, ii. 110.
district, scheme for canal through, i. 9, 15; surveys in, 79.
and Myppoori districts, i. 79.
Alps, i. 100.
Anderson, Mr. C., i. 97.
Angelo, Lieut., i. 98; assiatant on Etawah brancl, 383.
Anaual rains, ii. 21.
Anoopshulur, i. 399, ii. 105.
Aoseer, village of, i. 277.
Apparatus for opening and closing bays of regulating bridges, ii. 13; how constructed, ib.; time and labour in using, ib.; effliency of, ib.
Appendices to report of sanatory committee, iii. 29.

Approach to Rutmoo dam, curve of, ii. 31; reretments, ib.

- ramps of, on Puttri, ii. 90 ; construction of, ib, slope of, ib.
Apron for protecting dam (Rutmoo), ii. 41; formation of, ib; retention of, in position, ih.; slope inwards of, ib.; double use of, ib. - of heavy materials (Ranipoor works), ii. 71; width of, ib.; way of carcying, ib.; out of reach of whirlpools, ib.
Apron-work (Rutmoo), ii. 34; strengthening of, ib.
Aqueduct line, reason for preference of, i. 27 ; cost of, 28.
- over Rutmoo, i. 120.
- on Solani, design of, ii. 429; area covered by body of, 468.

Aqueducts, super-passage in contradistinction to, ii. 64.
Arch, Ranipoor, thickness of, ii. 72.
Arched passages (Rutmoo works), ii. 4 N : separation of, ib.; descent of, $i b$.
Arches, measurement over crown of, ii. 69: centeringe for, 86; materials forming the. $i b$; recommendation of, il.; construction of, 218; classilication of, 226 ; description of, 276,487 ; line of, 461 ; supports of, $i b$.
Area of irrigation, i. 28.
$\overline{\text { between Ahneea and Rinde, j. } 343 .}$
Artificial lives, law of, ii. 166 ; steep slope of. ib.; remarks on, 285.
Ascending and descending chambers, ii. 408.
Assoffnuggur, i. 87, 208; new series of slopes from, 87, 200; escape of water at head of irrigation at. ii. 438.

- falls, 186, 187, 204, 436; second division commencing at, i. 247 ; effect of on irrigation, 436, ii. 178; description of, ii. 175; materials of which built, $i b$.; elevation of, ib.; wing walls of, $i b$; foundations of, i $i \ell$; quantity of material used in, 177; cost of. 178; head of, 518.
to Jaoli, depth of water from, ii. :313.
Auckland, Lord, Governor-General, i. 18.
Ava, fort of, i. 287.
Axis of Khutowli bridge, ii. 116; of Klurtowli escape, ib.
Axles, materials for lubricating, ii. 444.

B.

Badshalipoor, village of, i. 5, 16, 20, 112; line of jheels and marshes from, 41; nulla, 116, 145, 165.
— inlet, i. 178, 183, ii. 59, 79; width of waterway of, $i b_{\text {; }}$; uniform design of, ib.; sill of, G0; masonry, 6h: cost of, ib.
Bahadoorabad, i. 131, 146.

- falls, i. 175, 176, ii. 10, 163, 173; cement used in, ib.; material used in, ib.; cost, 174; under whom built, ib.
\longrightarrow mills, i. 181, ii. 437; site of, i. 372: channel, ii. 45; escape at, ib.
Bahosi, fort of, i. 280; bridge, 292.
Baitool, low land to, i. 250.
Bajooheri village, i. 36, 117, 183; approach of canal to, i. I 85.
Baker, Captain, i. 26.
Baker, Major W. E., superintendent of Delhi canals, i. 12, 13, 14; project for Sutlej canal, 15; assumes charge of Ganges canal works, 37 ; director of Ganges canal works, 38; departure of, 39; president of a com-
mittee, 40; report called from, 64; reasons for plan of operations, 65 ; recommendations in report of, 68 ; establishment recommended by, 69 ; system of accounts proposed by, 71 ; conclusion of report by, 72 ; abstract of expenditure, 73; suggestions of, approved by government, $i b$.; delivered over charge of works, 77; leaves canal works, 99 ; section of Indus by, 170 ; extract from report on Ganges canal works by, iii. 3; concluding remarks in report of, 5 ; report on Ganges canal works by, 131.
Bakurgunj, village of, i. 289, 294.
Bandmoo, village of, i. 250.
Bangunga, an old branch of the Ganges, i. 16, 17.

Banks, maintenance of, duties of beldars concerning, ii. 111.
Bar, adoption of, ii. 11; experimental, ib.
Barrack-masters, forms to be observed by, iii. 117.

Barrage, Egyptian works called, i. 104.
Barrah, village of, i. 250; bridge at, 308, ii. 272.

Barrapoor, bridge at, i. 293.
Basin, catchment (Rutmoo), ii. 22; area of, $i b . ;$ length of, $i b$.; width of, $i b$.
——Puttri, drainage of, i. 114, ii. 65; connection of, with Rutmoo, 79 .

- Ranipoor, ii. 65; watershed of, 78 ; boundaries of, $i b$.
- Rutmoo, connection of, with Puttri, ii. 79.
- centrical, drained by Rutmoo river, i. 114.

Bastions at Solani aqueduct, ii. 433; terminating, 455.
Bathing-places, i. 129.
Bavino quarries (Italy), i. 101.
Bay of Bengal, i. 45.
Bays, number of (Myapoor), ii. 12; width of, ib.; heigbt of, ib.; shutters of, 13; facilities for closing, $i b$; ; importance of, $i b$. ; necessity for keeping one open for navigation, 15.

- (Rutmoo), number of, ii. 33; height of, $i b$; masonry flooring of, ib.
- conversion of, into abutments (Solani aqueduct), ii 510 .
Bed levels of canal, great descent in, between Ranipoor and Puttri torrente, ii. 20.
- Rutmoo river, state of, ii. 55; high ground in centre of, $i b$.
- excavation of, at escapes, ii. 115.
- Solani, slope of, ii. 465.

Beerpoor jheel, passed by Etawah branch, i. 348 ; description of, ib.
Begumabad, town of, i. 58, 213.
Bejapoor cenal, i. 12.
Behut, town of, damaged by Zabitha Khan's canal, i. 422; connected with Suharunpoor, ii. $10 \overline{7}$.

Belaspoor, adrantages of escape taken from Bolundshuhur branch near, i. 419; a jaghire belonging to late Col. Skinner, $i l$.; navigable line of canal near, ii. 410.
Beldars, working parties attached to Rutmoo regulator, ii. 49; duties of, 98 ; regulation for discipline of, ib.; responsibility of, 111.
Beldor, deacription of mills in Provence and Dauphiné taked from, ii. 380.
Belka falls, low levels of, i. 165.
Belra, village of, i. 20, 202, 206; height of, above the eea, 21 ; approach of canal to, 204; depth of excavation from, 200 ; list of works constructed on canal from, ib.

- falls, i. 192; commencement of foundations of, 78 , ii. 180; design of, ib.; foundrtions of, ib.; protective arrangementa for
excavations of, 181; materials of, $i b$. ; cost of, ib. ; under whom commenced, $i b$.
Benares, method and description of brickmaking obtained from, iii. 4, 5.
Bengal, bay of, i. 45.
Bentinck, Lord W., plans of Captain Debude submitted to, i. 10.
Bergamo (Italy), i. 99, 103.
Berm, regularity of, from 110th mile, i. 240 ; purpose of building the, ii. 16; construction of, 577.
Best, Captain, i. 58, 59.
Bhabur land, i. 42.
Bhat river, i. 117.
Bhawunt village, drainage near, i. 268. bridge, j. 275.
Bheel, quarries at, ii. 104.
Blimwanmow, village of, i. 321.
Bhogpoor, lower flats of, i. 170.
Bhola, village of, i. 221 ; navigable cut at, ii. 315, 317; deviation from general design at, ii. 316.
-_falls, ii. 165, 185 ; foundations of, ib.; design of, 186 ; materials of which built, $i b . ;$ cost of, ib.; under whom built, $i b$.
Bhookurheri, i. 112, 114, 117.
Bhoor (sandhills), a remarkable feature, i. 113, 122, 199, 206, 210.
——tracts between Sirdhunna and Jullalabad, i. 215.
Bhopa bridge, i. 208.
Bhosan bridge, i. 308, ii. 277; foundations of, 278.
—arch, fall of, iii. 216; sletch of, ib.; causes of fall, ib.
Bhuguleea nulla, i. 147; tunnelling proposed for, 148 ; flling in of deep section of, ii. 23; cuts in low ground near, ib.; spurs on right bank of, ib.
Bhugwanpoor, i. 112, 115, 118, ii. 413.
Bhutti territory, i. 13.
Bidhun, bridge at, i. 293.
Bijigurh, fort of,'i. 287, 320; ancultivated tract around, 326.
Binnowra, fort of, i. 283.
Birbeeya, entrance of Noon drainage into Ganges khadir at, i. 290.
Birowli bridge, i. 230.
Bithoor, i. 305 .
Bitt-heads at Myapoor, ii. 15.
"Blane, Capt. i. 110.
"Blind" escapes, upstream end of Solani aqueduct, i. 186.
Blocke (Rutmoo), meximum and minimum depth of, undersunk, ii. 31 ; distance between each pair of, 32 ; arching of, $i b_{\text {; }}$; masonry, ib.; number in right and left revetments, $i b_{.}$; number in bays, piers, \&c., $i b$; supporting platform, 37 ; forming foundations of inlet across Rutmoo channel, 42 ; detail of, 470; number of, in Solani aqueduct, 477; rate for each class of, 480. Block-sinking (Solani aqueduct), ii, 459.
\longrightarrow paper on, by Captain A. G. Goodwyn, iij. 268.
Boats, arrangements for paseing Ranipoor and Puttri works, i. 181.
Bobyl, fall of, i. 165.
Bochna nulla, i. 130, 131 ; inlet for, ii. 4; description of, 7.
- inlet, ii. 16; width of canal face of, ib.; limit to works of, on up-stream side, ib.; connection of works with line of ghat, ib.
Boileau, Col. John (engrs.), recommendation of bridge at Mynpoori over Eesun river, i. 264.

Bolundshuhur, i. 94, 201, 207; regulator, 198; course of canal through, 222 ; cross section from, to Kuroon river, 224 ; section
of canal on leaving, 237 ; waterway of re-
gulator, 239 . gulator, 239.
Bolundshuhur district, Capt. Debude'sscheme for canal through, i. 9,15 ; levels in, 17 ; surveying in, 79 .
branch, leogth of, i. 34; description of, 84 ; lies in 3rd division, 95 ; completion of six miles of chanael, ib.; intended for irrigation of Jumna khadir, 220 ; headworks, 221, ii. 99, 103; proposed division of fall on, i. 408; data, ib.; section of channel, 410 ; junction of canal with Koel branch, 411; leading heads for escape on, 417; situation of, ib; point at which brauch leaves the canal, $i b$; bridge, ib.; course of, 409 ; possibility of line to Jumna from, 410.

- branch head regulator, i. 98; amount of high water on, ii. 103; formula of discharge over, ib., establishment at main branch at, 111; discharge at, 542.
-and Koel branches, i. 400; surveys of, incomplete, ib.; original estimates for, 402 ; length of works, 403; estimate of supply, 404 ; table of slopes on, 405 ; dimensions of, after junction, 412; proposed establishment of feeders from Etawah line, ib.; proposed means of escape on, 415 ; irrigation on, 469.
Bombay, Lieut.-Col. Cautley arrives at, i. 104.

Boodhi Gunga and Boodhi Jumna, similarity between, i. 5 .
Boodhi Jumna, head of, i. 16; shingly bed of, 109.

Boodpoor, masonry fall at, i. 35, 192.
Books, list of, in Ganges canal professional library, iii. 235.
Borassus flabelliformis, i. 230.
Bossut, De, dissertation on curves, ii. 159.
Boulders, used in foundations, ii. 86; where collected, ib.; bed of Solani aqueduct composed of, 453.
Boundary rivers, drainage of, ii. 58; beds of, ib.
Boungla, village lands of, i. 141; expanse of sand at, 144.
Branch (Myapoor), bed of, ii. 10.
Branches, works at departure of, i. 87; reasons for discontinuing, 94 ; dimensions of channels, 127 ; heads, ii. 95 ; works attached to heads of, 99 ; escapes above the, 107; means for laying dry, ib.; number of gates at heads of, 111.
Bricks, failures in manufacturing, ii. 18 ; how made, 26; whence soil for making is procured, $i b$; ; superintendence of manufactories of, ib: : sizes of, used in Rutmoo works, 51 ; burning of, il.: whence the best are procured, 501 ; return of, iii. 3; cont of, ib., 4; high price of kutcha, 8; expenditure on, ib.; abstract of, in 1847-8, 9; table of rates of, it.
Brick-flelds (Rutmoo), proximity of, to works, ii. 25; to excavated channel of new escape, ib.; advantages, ib.
Brick-kilns, various essays in, iii. 4.
Brick-making, commencement of, i. 29; machinery for, 91 ; Hall's machinery for, ii. 51, iii. 9,10 ; in Northern or lat division, iii. 1 ; results in, 2 ; Ainalie's machine, 3 , 14; experiments in, 3,4 ; alstracts of, 1 to 20: modes of, 6.
Brick-lioulders, strikes among, i. 191.
Brick-work, induration of, ii. 32; abstract of, iii. 2.

Bridges, list of, i. 87, 224, 252, 258; width of waterway from 110 th to 180th mile, 241; design of, 314, ii. 279; ramps of, 4, 91;
diminished height of, 18; flooring of, 34; description of roadways, $90,91,107$; inlets, 94; attached to branch heads, 100; over canal and branches, 103; conversion of, into roads of communication, 108; flanking of waterways, 217; between head of canal and Roorkce, 227; materials used in, 228, 258; details of, 248; construction of, 275 ; injured by floods, 463.
Bridges, regulating, connection of, with dams, ii. 12; design for, 13; connection of, with canal channel, 20; action of, 95, 96.
Bridge inlets, object of, ii. 59, 89; connection of, with excavated channel, $i b$; conflned to tract above Roorkee, ib.; ramp of approach, 90.

- Myapoor regulating, ii. 45.

Brownlow, Lieut. i. 98 ; succeeded Lieut. Johnstone on Etawah brauch, 383.
Brushwood, layers of, ii. 57; use of, il.; plantations of, 93.
Buffalora, town of, i. 99.
Building for machinery, ii. 330.
Buildings, choki, ii. 4, 99; general remariss 0D, 17.
-super-passage, Puttri, ii. 89; locks of, $i b$.; number of men forming gangs at, ib, overseer of, ib, ; duties of overseer of, $i b$.

- escape, ii. 114; proximity of, to bridges and chukies, il.; accessible position of, ib.; proper superintendence of, ib.
Bujrungpoor, i. 326.
Bukutpoor hollow, i. 270.
Bunar, village of, i. 399.
Buadelkhund, course of river Jumaa in, ii. 407.

Bundi, bridge at, i. 259.
Bunds, probable consequence of establishment of, i. 42; thrown across the Jumna, ib. ; on the l^{P}, 99 ; judicious application of, ii. 53 ; parallel lines of, 54 ; situation of, ib. ; effects of flood upon, 529 ; additions made to, 531.
Bur (Ficus reliyiosa), specimens of, ii. 8.
Burani lands, i. 203.
Burotha, bridge at, i. 234.
Burragaon, slope of canal near, i. 338.
Burramai, bridge at, i. 258.
Burrumpoor nulla, ii. 430.
Bur-tree, gigantic, ii. 9 ; a centre of attraction, ill; arms, shadow of, ib.; how protected, 16.

By $\mathbf{B s w a l}$, village of, i 20; height of, above the веа. 21.
Bytulsy, ii. 8 ; nature of, il.; position of, ib.; height of, ib.; approach to, ib.; sanctity of, $i b$. destruction of, 9 ; rebuilding of, ib, ; ornamental, $i b$; present position of, ib.

C.

Calculation of revenue from canal works, i. 28.

Calcutta, Sir H. Hardinge's arrival at, j. 37.
Cadal: line between Sutlej and Jumna, i. 14; from Kunkhul to Cawnoour, 27; length of Futteligurh, Bolundshuhur, Etawah, and Cawnpoor branches, 34 ; profte on irrigation from, 49; trafte in dry and wet senson on, 50; benefits to be derived from, 51; benefits of irrigation from, 53 ; near Kurnal, 56; reasons for advocating irrigation, 58 ; lines to be completed at once, 65 ; surveys recommended for, 68; first object of, 81 ; course of main trunk, A4; division of main line of, ib.122, 198; works on early
part of course, 85 ; remodelling of line, 87 ; difficulties of, less in Lombardy than in India, 101; difference of, in Lombardy and Piedmont, 102; crossed by mountain torrents, no examples of. observed in Italy, 103; connected with mountain rivers in Piedmont, 104; passage over Solnni, 119; (branch) above Hurdwar, 126; crossing of Ranipoor torrent, 133; line of patrol for, 137; points of contact with torrents, 150, 151; water projected into channel, 152; case of, without embankments, 159 ; curve of channel in the Doab, 167; slopes of channel, 187; soil of channel from Ranipoor, 190; length from Roorkee to Nanoon, 192; branch near Jaoli, 193; proposed Tuppul branch, ib.; original project of, from Rnorkee to Nanoon, ib.; line from Khutowli to Sirdhunna. 212; inclination of, from Sirdhunna to Jullalabad, 217; boundaries, 218; course from 140th to 160 th mile, 225 ; course of, from 160th mile, 230 ; completion of 3rd division from looth to 180th mile, 247; reduction of depth of water in, 256; course from 44th to 65th mile, 262; contact with cross drainage, 268; course from 65th to 190th mile, $i b$.; section of channel at 100th mile, 273; project for 1845, 276; actual state of, 277; main line of (1845), 278; course from 100th to 135th mile, 280 ; course from 127th mile, 286; intermediate course between Pandoo and Eesun, 291 ; line through Cawnpoor cantonment boundary, 297; milestones, 318; numbering of milestones, $i b$.; plantations, ib.; works for regulating supply in, ii. 4; power of retaining supply of, 5 ; mouth, 6 ; excavations at head of, 9 ; slope of bed, 21 ; enbankments at Peeran Kulleeur, 23, 24 ; section of channel between Rutmoo and Peeran Kulleeur, il.; confnement of water in channel, 29 ; means of entering channel, ib.; entering of torrent, ib; work for relieving channel, 37; regulation of supply, ib.; channel on Rutmon river, 44; protection of chanuel, 47; reaches ligh land of Roorkee, 58 ; position of channel, $i b$;; transverse section of, 67; true level of bell of, 72; contingency of floods, 73 ; situation favourable for drainage operations, 84; inlets on, 89; position of chokies, 92; effect of boundary ditches, $i b$; angle formed by embankments, ib.; regulation of supply for irrigation, 95 ; bridge over, 103; number and height of bays, ib.; supply on reaching Nanoon fork, 107; menns for ikeeping floods out of Ganges river, 109; escapes for relief of, 114; fall of bed to West Kalli nuddi, 116; difficulties of completing line, 117 ; slope of bed, 520; description of excavation, 548; proposed distribution of supply, iii. 142, 143; ground occupied ly, 14i.
Canal department, work writtea for informetion of, i. 132.
head at Myapoor, amount of water admitted into, ii. 542.

- heals on Jumna, i. 46.
sanatory committee, results of inquiry of, i. 61 ; reconmendations of, 62 .
works, Government embarked in, i. 64; instructions of Government on, G4; diffculties in constructing, 67; English offlce establishment, 69; native office establishment, ib.; treasury estnblishment, io; detached works, it; state of, 77; from 1848 to 1854, ib.; staff on, in 1848, 78 ; of 2nd division, 79; of 3rd division, ib.; of 4 th division, ib.; of 5 th division, ib.; of 6 th division, 80 ; points influencing, 84 ; extent
of 1st division, 85 ; allusions to interruptions in, 88; interruptions to progress of. 89; cause of delay in, 92; steady advance of, 95; 6th and 4th divisions incorporated, 98; actual state of, 154; in connection with mountain torrents, 159; division of, ii. 433. Canals, argument on benefits to be derivel from, i. 49.
- Milanese, derivation of eupply of, i. 100. Cantonments, removal of from Kurnal, i. 54. Castor-oil plant, stalk of, ii. 320; use of, it,
Catchment basins, ii. 64 ; extent of, il.; character, $i b$; of what consisting, 65; area of, ii. 80; super-passage for drainage of, $i b$.
Cattle ghats, tendency to silt, i. 169; inlets attached to, ii. 92.
Cautley, Captain, receives charge of canals from Colonel Colvia, i. 16; appointment ubolished, 17; takes charge of Eastern Jumna canal, 18; report of, Ganges canal, 30; confequence of error in report, 31; placed in independent control of Doab canals, 32; duties of, ib.; report of 1845, 33; various projects for Ganges canal, 33-35: estimates of cost, 34; first project for Ganges canal, ib.; second project, ib.; thiril project, il.; proceeds to Lurope, 37 ; arguments on Ganges navigation, 40; fourth project of, 83; estimate of, iii. 292 .
Cautley, Major, report of, referred to by government, i. 64.
Cautley, Liput.-Colonel P. T., report on irrigation, i. 53; state of works when he received charge, 77; directorship of, ib.; works proceeded on third project of, 30 ; report of 1850,83 ; observations on estimites of 1850, 84; summary of report of, 88; amount of estimate of, 1850,89 ; abstract of expenditure on canal works, 89 ; aim of, 92 ; reasons for change of plan, 93 ; views on canal question, il.; leaves England to visit canals in Lombardy, 99; resumes charge from Major Baker, 104 ; early carecr passed on Eastern Jumna canal, 110 ; report and estimate of 1850 , 121; views of, in 1839-40, 126; project of 1845, 140 ; original survey of (1839-40), 141; surveys of Ganges canal made by, 149; report of (1845), ib., 151; occopied on drainage question, 153; letter of, 174; extract from letter of, 198; report in 1840 , 218.

Cauvery, waters of, in Southern Madras, i. 52.
Cawnpoor, erection or water-g:uges at, i. 23; proposed navigable canal from Kunkhul to, 27 ; extension of levels to, 33; length of proposed irrigution branch, 34; volume of Ganges water passing, 44; navigable lines from the mountains to, 50 ; peculiar feature of district, 81 ; line bearing upon, 198 ; works constructed in town of, 298; low land lying between, and Baitool, 250 ; description of canal at, 301 ; design for drainage, ib.; pusition of canal works ar, 302; military advantages of camal work: to, 303; list of works at, 309; difflculty ot procuring bricks at, 320; traffic between, and Alligurh, ii. 110.
cantonment : proposed removal to right of canal line, i. 303.
district: course of Seyagoor river through, i. 229.

- terminal : when ready to receive water. i. 96; delay of works, ib.; put under management of Lieut. Hodgson, 98. 320; length of, 250 ; description of, ib.; detail of worke on, 251; average depth of digging on first thirty miles of, 257; course of, from Gud-
dunpoor to Singpoor bridges, 259; course of, from 135th mile, 293; curres on, 294; course from 144th to 164 th mile, 295 ; peculiarity remarked upon, 298; actual head supply of, 309; calculation of expenditure of supply, 310; transverse section of channel, ib.; width of towing-paths on, 317 ; description of roadway, ib.; description of station posts on, 319; divisions of, $i b$, ; edrance of Etawah division, 323; situation of rajbula heads on, 456; dimensions of, $i 6$. ; slope of country, 457; rajbuha irrigation from, $i b$.; plan of rajbuhas on, 458; feeders from, 462 ; description of, ii. 135; escapes on, 136; soil of, 243; materials used in, 244; excavation, 565; state of country, 566 ; section at Ducknapoor bridge, $i b$; difficulties of, 567; Lieut. Hodgson's remarks on, $i b$.; capacities of channel, iii. 146.

Carnpoor terminus, situation of, ii. 407; points of difference between, and Etamah terminus, ib.
Cement, proportions of, in Myapoor works, ii. 19; composition of, 75.

Centerings, earthen portion of, ii. 209; description of, 487.
Centre sluices (Rutmoo dam), ii. 38, 44; height of, ib.; construction of, ib.

- sluice gates (Rutmoo dam), ii. 44; holding of, in position, ib.; pressure of water on, $i b$.; leakage of, prevented, $i b$; action of, as self-regulators, ib.; efficiency of, ib.
Chains, iron, used in block-sinking, ii. 56.
Chamber, left, flooring of (Puttri superpassage), ii. 85 ; settlement of, ib.
Chambers, means for closing, ii. 68 ; without masonry bridge across, 403; proposed double line of, 408; method of laying dry, 512.
Chandni Puhar (hill), i. 123; temple on, ib.
Chandpoor, village of, ii. 437.
Channel : process of deepening, well understood, i. 49; excavation, advancement of, 82; results, ib.; evils of torrents entering, 173; increased width of, 176 ; capacity of, from 110th to 144th mile, 239; rectangular reduction of, 265 ; average depths of, ib. ; inlets forming part of rajbulia. ii. 3 ; width of, from Ganges to Myapoor dam, 9 ; slope of, i6. ; change of slope, 10 ; effect of slope on branch, ib. ; means for facilitating clearance out of, il ; plan for using, 49; capabisity of performing duties required of, 50 ; maintenance of, as free water passage, ib. ; influence of, on salubrity of country, ib. ; disposition of, 67 ; total width of, ib, ; abutment of mill channel (Ranipoor super-passage), $i b$; width of, $i l$.; super-passage channel, 71 ; difference of alope between Ranipoor and Puttri channcls, 80 ; relief of rajbuha channels, 91 ; amount of slope, 103; capacity and equilibrium of supply, 112; line of Ganges canal. 113; outlets at stated distances slong, it. ; regulation of supply in, ib.; length of, from main canal to the West Kalli nuddi, 119; regulating supply in, 302 ; revetted channel, length of, 434 ; for cartying canal water over Solani, 463 ; action of fuid on, 525 ; sections of, iii. 143 .
Chenab river, i. 4.
Clitowtr falls, 192, 209, ii. 183 ; extensire ruins near, i. 207; foundation wall of, ib.; materials of, ib.; cost of, ib.; under whom built, ib; depth of water from, to Desna, 313; works at, 318.
Chobipoor, bridges over the Noon at, i. 290.
Clooki ports, establislunent of, i. 38.

Chokies, description of, ii. 280, 281, 286; position of, 282 ; intention of, $i b$.; estimate for, 287; cost of, ib.; evil of using halfburnt bricks in, ib. ; tables of, 289; arrangement of, 291, 292.
Choiya nulla, i. 214, 218 ; aqueduct over, 278; flood-water in, ib.; level of bed of, 279; recommended to be surveyed, 399.
${ }_{i b}$ drainage, i. 398; nullas connected with,

- river, depression of, i. 215.

Chokra, village of, i. 253.
Chubootra (masonry platform), ii. 8.
Chumbul, retrogression of levels in, ii. 161.
Chundelon ka Nugla, rise of drainage near, i. 348.

Chundos, cross-communication with Anoopshuhur, ii. 105.
Chungeri, bridge at, i. 234.
Chungurwa, fort of, i. 284, 285.
Church at Roorkee, ii. 94.
Climate, causes of change in, i. 53.
Circuitous line without aqueduct, cost of, \mathbf{i}. 28; advantages and disadvantages of, 118; example of, $i b$.
Civil Engineers' College at Roorkee, ii. 613.
Clay, well-marked bed of, ii. 31.
Clerk, Mr. G., countenances Ganges canal, i. 37.

Coleroon, waters of, in Madras, i. 52.
Collyer, Assist.-Surg. N., report of, iii. 54.
Colvin, Col. John, C.B., superintendent of canals, i. 11 ; report of, and its consequences, $i l$.; left India in 1836, 12; works on Delhi or Western Jumna canal partly designed by, 110; undersinking by, ii. 469.
Committee on Ganges canal works, i. 26 ; recommendations of, 28.

- for inquiry into causes of sickness on canals, i. 59 ; results of labours of, $i b$.; report of, 60 ; principal conclusion in report of, ib,; results of inquiry of, 61; recommendations of, 62.
Como, Lago di, the source of the Adda, \mathbf{i}. 101.

Contingency of floods provided against, on Ranipoor and Puttri super-passages, ii. 72.
Contract system of irrigation, difficulties of, i. 429.

Contracts for hricks, iii. 2.
Contractors, difflculties caused by want of, i. 90; rate allowed to, ii. 557; resulta of accounts of, iii. 3; causes of failures of, $i b$.; men of straw, ib.
Corbels, use of, ii. 37.
Corn-mills proposed to be built near Lounda Leniwala, i. 134.
Correspondence, précis of, in reference to canal works, i. 30, 31.
Cotton boats, relative size of, on Jumna and Ganges, i. 48.
Counterforts, ij. 32, 35.
Country, features of, in southern districts, i. 83; water, protection from inlet of, in Ganges khadir, ii. 58; surface level of, 72; topographical features of, 79; natural escape for draingge, 89; developing of works on, 112; depression of, overcome, 401; slope of, 409 ; waterahed of, 538.
Court of Directors, despatch from, i. 25; machinery sent by, ii. 332.
Cremona, i. 99.
Crible, Mr., ii. 366.
Crops, failure of, in central provinces, i. 18; etatewent of, grown on irrigated lands, iii. 58.

Cross communication, advantage to, i. 154; bridge of, ii. 20, 29, 31.

- drainage, peculiar character of, i. 268.

Cross sections from Hurdwar to Kunkhul, i. 124; showing relative positions of Rinde and Eesun, 279.
Cugger river, i. 13; small means of irrigation offered by, ib.
Cuilleres, mentionted by Belidor, ii. 380.
Cultivation, i. 219, 223.
Current, increased velocity of, ii. 45; effect of, $i b$; advantage of, $i b$.; meeting of, 46; action of, reduced, 61; direction of, Solani, 491.
Curtain, portions of, laid in by use of dalls and scoops, ii. 84.

- or apron blocks, failure in, ii. 478.

Curves of revetments, radii of, ii. 31; of approach to lock chambers, 305.
Cuts from Ourun drainage into the Pandoo, i. 294; across slopes in bed of Solani, ii. 525 . Cutwaters, ii. 13; extent of projection of, ib. Cylinders, vertical direction of, ii. 35.

D.

Dadoopoor, i. 109.

- dam, i. 108 ; foundations of, ii. 469.

Daglabels (lines of excavation), laying out of, ii. 579.

Dalhousie ghats, ii. 227.
Dalls (or scoops), laying in of walls by, ii. 84. Dam, and inlet, on Rutmoo river, longitudinal profile of, ii. 44; diagram of, ib. ; description of, ib.

- system, passage of Rutmoo by, i. 120 ; proposed adoption of, 140.
Darnietta, i. 104.
Dams, retaining, i. 104 ; proposed site of 142; progress of Ranipoor dam, 153; canal works connected with, ii. 4; connection of, with drainage works at Dhunowri and Myapoor, $i b$; ; sluices of, 5,7 ; position of, 6 ; foundations of, when laid, 7 ; piers, ib.; right flank, connected with regulating bridge, 12; foundations of, 18; depth of foundations, $i b$.; materials used $\mathrm{in}, i b$.; flanks of, 31 ; revetment on down-stream side of, ib.; up-stream tanks of, 41 ; protective arrangements for, ib.; apron along face of, ib.; down-stream side, ib.; platform, ib.; component part of regulating bridges, 95.
Daoodpoora, village of, ii. 142.
Daoopoor bridge, i. 230.
Dasna, i. 217, 218; fall and works at, 221, ii. 165; waterway below, i. 239.
——falls, ii. 186; foundation of, 187; memorandum relating to, ib.; diagrams of 188 ; piling of, ib.; materials of which built, $i b$.; cost of, 190; under whom builh, ib.; limit of rajbuhas to heads of, 478.
Debude, Captain, project of, i. 6; mere enlargement of Aloo Khan's scleme, 8 ; design to throw embank ments over Hindus and West Kalli nuddi rivera, 9 ; menns limited, 10; proceeds to Calcutta, ib.; canal head at Rampoor by, 17.
Decisions on points submitted by executive offlcers, iii. 127.
Declivity, restriction of, on canal line, i. 33.
Delhi, i. 46, 50, 107, 108, 109, ii. 103; navigation from hills to, i. 50 ; crossing of high road to, 225; celebrated for remains of ancient sewerage and underground channels, 301 ; city of, ii. 64.
-and adjacent districts, reservoirs for irrigation extensively used in, i. 8 ; canals, 13; means of irrigation of, 107.
canal, $\mathrm{i} .42,54$; winding through khadir, 55 ; disadvantages of, 60,61 ; design of works on, 110.

Delhi and Doab canals, results on, i. 197.
Delta of Nile, works of, i 104.
Dempster, Dr., i. 40.
——Lieut., i. 79.
Deorala, village of, i. 6 .
Deposit, fan-like form of, i. 170; shown on Eastern Jumna canal, ib.; periodical clearances of, ib., ii. 10; effects of, ib.
Deposits from action of torrents, i. 57 ; from floods, 155.
Depression, extent of, at Badshalipoor village, i. 113.

Depth of wells, i. 266.
Descending and ascending series of works, proposed retention of, on Etawah terminal, ii. 408.

Descents, masonry, i. 143 ; perpendicular, ii. 160.

Details of Ganges canal lines, i. 28.
Deviation of Ganges canal line, i. 270.
Deyori, course of Mr. Read's line from, i. 399.

Deyra, i. 123, 126 ; timber trade in valley of, 60.

- Doon, valley of, i. 12, 32 ; watercourses in, 107, ii. 64; canals less diftcult than those of Jumna, i. 426; lime rock burnt in, ii. 51 ; rivers in, 212 ; series of observations taken in, 466.
Deywa jheel, i. 334.
Dharoo bridge, i. 266 ; line of canal from, 262.

Dharoo ka Nugla, inlet of, i 261.
Dholuri, i. 213, 214, 218.
Dhundos bridge, i. 275.
Dhunni ka Nugla village, passage of hollows at, i. 262.
Dhunowri, i. 41, iii. 9; falls, i. 175; village lands of, 176; dams connected with drainage works at, ii. 3,4 ; spring-water found in excavating channel $n t, 24$; position and description of springs in, ib.; effects of large volumes of water meeting at, 45 ; water from torrent at, ib.; velocity of torrent at, $i b$.; water from canal channel at, ib.; velocity of water from canal channel at, ib.; probable retention of slower current on high levels, ib.

- canal nt, abrupt curve of, ii 28 ; protection of, 29.
- estate on which Rutmoo worke are aituated, ii. 25.
- regulator, ii. 96; action of, for drainage purposes, ib.; duties of overseer at, ii. 97.
- sluices at, ii. 112.
- works, plan and section of drain of, ii. 27 ; centre of, ib.; ultimate success of, remarkable, 28 ; outline of, 29 ; fortification of, ib.
Diagram showing operations on the Ganges khadir, i. 19.
- line of springs from the Sewalik hills, i. 42.
— section of canal, i. 133.
- torrent flowing over sandy bed, i. 161.
- canal bed, and supposed action of torrent, i. 162, 163.
- alope on Eastern Jumna canal, i. 166.
- channel, without embankments, i. 168.
- action of, i. 169.
— section of Indus, i. 170.
- canal at foot of Sewaliks, i. 171.
- map showing course of Ganges canal, i. 196; detail of projects of 1845 and 1846, 187.
- lining out of works, i. 205.
- qection of canal from Futtigurh branch head, i. 236.

Diagram showing section of channel from 110th to 144 th mile, i. 239.
capacity of channel on reaching Nanoon, i. 240.

- width of clannel at Koel branch, i. 240.
- lining out of roadway when in contact with milestone, 244; description of, 245. - course of drainage from Nanoon headworks to Ginnowli escape, i. 252.
- minimum section of canal clannel from Roorkee to Futtigurh branch, i. 255.
- section of canal at 30th mile from Nanoon, i. 256.
- position of canal works, i. 260.
- cuts into the Eesun and Rinde rivers, i. 261.
- drainage cut into the Eesun, i. 263.
- section of canal channel at 65 th mile, i. 265.
- course of canal from 65th to lo0th mile, i. 270.
section of canal channel at looth mile, i. 273.
actual and proposed course of canal, i. 277.
- Tureend drainage crossed at Kunsowa, i. 282.
- section of channel at 135tb mile, i. 291.
\rightarrow character of country in neighbourhood of Dubowli, i. 296.
- section of clearance for canal line, Cawnpoor, i. 300.
- lines of military cantonment of Cawnpoor, i. 303.
section of canal channel where grand trunk road crosses line near Duknapoor, i. 307.
- variety of slope in canal bed, i. 312.
- elevated platforms of superfluous earth in rear of canal roadway, i. 317.
- connection of Etawah and Cawnpoor
lines with drainage of Rinde and Seyngoor, i. 325.
- profle of country between the Δ ws hollow and the Rinde, i. 329.
- section of Etawah canal channel at 30th mile, i. 330.
- lines of drainage at 58th mile of Etawah terminal, i, 335.
- section of canal channel at 65th mile, i. 340.
——position of drainage from 65th to 120th mile on Etawah terminal, i. 342.
- nature of drainage on Etawah terminal between 80th and 84th mile, i. 345.
position of drainage near Keyseri ka Poorwa, i. 349.
- section of Etawah canal at 120th mile, i. 352 .
- outline of country on Etawah terminal, from 120th mile, i. 356.
-position of Etawah canal in vicinity of Sithmurra nulla, i. 259.
- Etawah terminal in connection with Rinde, Noon, and Seyngoor rivers, i. 362.
- plan of irrigation from Bolundshuhur and Koel branches, i. 402; explanntion, ib. - skeleton design of rajbulias in Mr. Read's division, i. 442.
- dimensions of main rajbuha and feeder channel, i. 443.
- section of masonry bridges for crosscommunication, i. 445.
- passage of East Kalli nuddi by rajbuhas, i. 453; explanation, 454.
- sketch of irrigation on Cawnpoor terminal, i. 459.
- lines for Hatrass irrigation, i 465.
- outline of proposed irrigation from Jes-
wuntnuggur rajbuha to Ukburpoor and Moosanuggur, i. 469.
Diagram of dams and works connected with draidage at Mynpoor and Dhunowri, ii. 4.
- vertical section, drop-gates on the old and improved method used on the Jumne and Ganges, ii. 14.
- works at Dhunowri, ii. 20.
- section of highest observed floods and the condition of the bed of the river before and after floods on the Rutmoo, ii. 22.
- section of canal channel lying between

Rutmoo works and Peeran Kulleeur ridge, ii. 24.

- section of boring 100 feet east of centre of canal at Rutmoo, ii. 25.
- plan and section of drain of Dhanowri works, ii. 27.
- plan and section of drain at Dhunowri, ii. 35.
- arrangements made prior to rains of 1852, and their effect on course of the Rutmoo river, ii. 53.
- state of hed of Rutmoo river, ii. 54.
- permanent embankment constructed by Mr. Login, ii. 55.
- bed and bank of Rutmoo river, ii. 56. - showing effect of sandy deposite in bed of Rutmoo, ii. 57.
- levels of river bed, of high water in canal, and of canal bed, ii. 73.
level of the bed of the Ranipoor rao in 1853, ii. 77.
different strata of earth at the overfall of the Puttri super- passage, ii. 82.
- plan of drainage operations, ii. 84.
— level of the bed of the Puttri naddi, 1853, ii. 88.
——bridge inlets on drainage works, ii. 90.
- Khutowli escape, ii. 116.
- Aboo's nulla escape, ii. 122.
—— Janni Khoord escape, ii. 125.
- Moonda Khera escape, ii. 130.
——Kasimpoor escape, ì. 133.
- Ginnowli escape, ii. 138.
— Nugureea escape, ii. 140.
—disposition of the slopes at the Tireea escape, ii. 143.
- Kukwan escnpe, ii. 145.
- Giliror escape, ii. 150.
- Mulhosi escape, ii. 152.
- Roora escape, ii. 155.
- curre of Eastern Jumac canal bed, ii. 160.
- plan of falls on Ganges canal, ii. 169, 170 lines of piling at Deasna falls, ii. 188.
- bays flled with earth in works of communication, ii. 203.
- earth centerings in works of communication, ii. 205.
- method of construction of earth center-
ings in works of communication, ii. 208.
- half-longitudinal and half-transverae sections of floorings, li. 214.
- protective covering of floorings of bridges, ii. 215.
- longitudinal sections of floorings where
bridge waterwaye are flanked by towingpath passages, ii. 217.
- abutment of a bridge, ii. 278.
- change mode in disposition of works between Ranipoor and Rutmoo torrents, ii. 299.
-ii. design of lock clambers on the Ganges, ii. 304.
- relative positions of navigable and main lines of canal and works attendant thereon below Roorkee, ii. 308.
disposition of works at Muhmoodpoor,
site of tanks or reservoirs from which earth has been taken to form embankments, and the abnormal position of firstclass choki, ii. 316.
Diagram: Bhola navigable cut, ii. 317.
section of valley over which aqueduct at Cawnpoor passes, ii. 384.
- section of Ganges canal from the Dubowli escape to Duknapoor bridge, ii. 389.

Lection of country connected with slopes in approaching Jumna river, ii. 409.

- Solani river, ii. 413.

S longitudinal dimensions of works on Solani river, ii. 417.

- lining out of trenches on Solani river, ii. 418.
- direction of railroads on Muhewar side of Solnni nqueduct, ii. 422.
- different lines of rails connected with

Roorkee side of Solani aqueduct, ii. 423.

- topographical character of ground at outlet of Burrumpoor nulla, ii. 430.
- works connected with Rutmoo and Solani torreuts, ii. 431.
- design of revetments on Solani aqueduct, ii. 435.
- progress of construction of revetment on Solani aqueduct, ii. 437.
-_ground plan of revetment on Solani aqueduct, ii. 437.
- Solani river, showing high-water mark
of flood of July 28,1844 , ii. 462 .
or Jumar river at Raj Ghat Mundi, ii. 466.
- bed of aqueduct of Solani, ii, 467.
- design of blocks on bed of Solani river, ii. 473 .
- original and altered design of foundations of wings. ii. 479.
——aprons on Solani aqueduct, ii. 483.
——course of Sulani river, ii. 488.
- direction of current when in contact
with masonry on Solani aqueduct, ii. 491.
- plan and section of arch-building on

Solani aqueduct, ii. 494.

- crack in arches on Solani aqueduct, ii. 504.
- protective works on Solani aqueduct, ii. 507.
- new species of protection for masoory works on Solani aqueduct, ii. 508.
- section of canal bed from tail of the

Puttri falls and super-passage to head of Assoffnuggur, ii. 518.

- project of 1850 for execation of canal channel, ii. 513.
- sections of excavation from Myapoor to Ranipoor torrent, and from Ranipoor torrent to the Puttri works, ii. 551.
-- section of canal at Toghulpoor, ii. 560.
- section of canal at Moradnuggur, ii. 560 . - extreme dimensions of canal channel,
ii. 562, 567.
- plan and section of canal, iii. 154.
- lining out of roadway, iii. 156.

Didowli, bridge at, i. 217.
Difficulties in laying masonry, ii. 83; remarkeble feature of, 455.
Digging, average depths of, i. 307, 331, ii. 81, 575.
Dimat, i. 202.
Dimat, inidge, report of apecial committee on,
iii. 213; section of eastern arch of, 215.
${ }_{212}$ and Bhotan bridges, reports on, iii. 212.

Dingri, i. 250 ; village of, 268 ; bridge at,

Directors, Court of, recommendation of Indian government to, i. 25; despatch of, ib.
Director of works to determine best lines, i. 69.

Disclarge, minimum from Ganges, i. 24; experiments at Hurdwar and Gurmookhteesur, ib.; values of, where canal sections occur, 377; rate of, ii. 465.
Divisional districts, proposed limits of, ii. 595.

Doab, i. 17, 31, 42, 45, 69, 85, 93, 122, 218; failure of crops in, 18 ; urgent necessity for irrigation of, ib.; advantages to high land of, 25; extension of levels in, 33; excavation commenced on high land of, 38 ; decrease of springs in, 41; low tracts of, 53 ; surveys made to discover watershed of, 65 ; divided into longitudinal sections, 81 ; plan of canal, south of Roorkee, ib.; canal through Jumna side of, 84; canal reaching high land of, ii. 89 ; northern, 112 , ii. 161 ; high land of, i. $118,119,123$, ii. 24, 127, iii. 1.
Dodsworth, Mr., i. 80, 94, ii. 78; surveys of, i. 98 ; deputed to survey country between Rinde and Jumna, 322; completion of surveys by, il .; deviations from line marked out by, 323 ; series of cross sections by, 401.

Doob grass, ii. 518.
Doon, Eastern, i. 170.
Doopoor, village of, i. 326.
Dora Baltea, canals from, i. 99, 102.
Dotana, quarries at, ii. 104.
Double aluice-gate, ii. 38; description of, ib.; working of, 39.
Dowlutpoor, town of, i. 114.
Drain, double (Rutmoo works), ii. 30; escape of, ib. ; connection with cut, ib.; plan and section of, 35; description of, $2 b$; slits through arch and wall at foot of, ib.

- (Rutmoo), efflicient action of, ii. 36.

Drainage, a leading point of inquiry, i. 35; impeding irrigation in North-Western Provinces, 60 ; receptacles of, 108 ; to north of Kheri and Shah Munsoor, 114; scattered, 115 ; in khadir, ib.; courses of, ib.; well-defined mountain torrents, 116 ; of Jowallapoor, 134 ; Lounda Lenivala and Kunkhul lines, 135; Puttri, 143, 154; Selimpoor, 145 ; increased knowledge regarding, 149; Ranipoor and Puttri, clange in method of dealing with, 151 ; amount admitted to canal in 1845,179 ; undecided character of, 248 ; line from Nanoon, 251 ; line of, on 102 nd mile, 280; drainage of Sookutpoor, fort of Mhow, Raminugger, \&c., 283 ; course between Rinde and Seyngoor established, 322; detail of, on Etawah terminal, 327; from 41st mile of Etawah terminal, 3.94; at 61st mile of Etawah terminal, 336; intersections of, 344; from 120th mile of Etawah terminal, 357 ; on Futtigurh branch, want of detailed surveys on, 395 ; works for eacape of, ii. 3; effects of canal works on, $i b$; works designed to remedy interruption to natural drainage, ib.; plan and section of works for, 26 ; periodical relief of, 36; Kunklul drainage, 59; lines of, 78; natural separation of, indistinct, 79 ; interception of drainage-water by bridge remp, 92; classification of works, 112; rule for, 223; supplying the Solani, 464.

- cut, commencement of (Rutmoo), ii. 27 ; description of (Puttri), 85.
- line (Rutmoo), auccessful maintenance of, ii. 28 .
Drain-heads (Rutmoo), ii. 43; description of,
ib.; drop-gates attached to, ib. ; apparatus for opening and shutting drop-gates, ib; openings of, guarded, 49.
Drains, choking of, ii. 49; periodical clearances of, necessary, ib. ; supplemental, 93; construction of, ib. ; canal fronts of, ib.; protection of, $i b$.
Drought, advantages of canals in, i. 52.
Dubowli drainage, i. 295 ; contact of canal with, 305.
- bridge, i. 308, ii. 386 ; regulator attached to, i. 297.
- escape, i. 297; level of canal sill at, 307 ; by whom built, ii. 386.
- rajbuha, course of, i. 463; would join Assoffauggur rajbuha, ib.
— regulatur, main rajbuha from, i. 462 ; bridge and drop-gate, 463; connection of, with terminal works of Cawnpoor and Etawah lines, ii. 96.
Dubthulla bridge, i. 230; works constructed from, 234.
Duhurra village, i. 220.
Dukheri bridge, i. 209; soil of, ii. 273; masonry of, 274.
Duknapoor, passage of grand trunk road near, i, 294, 297; bridge at, i. 309, ii. 387.
Dulduls (or quicksands), marking drainage line, ii. 23.
Dumbleton, Lieut., assistant to Lieut. Hodgson, i. 79.
Dumkoura bridge, i. 227.
Dunkoor village, i. 219.
Dunnahar, bridge at, i. 267, ii. 246.
Durba, village of, i. 321.
Durgah, i. 183; tombs and reservoir attached to, 185; fair held at, $i b$.
Durrant, overseer sergeant, iii. 10.
Dutteeana, village of, i. 398.

E.

Eastern Doon, i. 170.
Eastern Jumna canal, i. 16, 29, 32, 107, 139, 156, 165, 199, ii. 109 : levels compared, i. 17 ; passage of, over Muskurra and Nogong torrents, 54; sickness near, 56; connected with Meerut district, 57; examples of drainage near, 60 ; course of, 109; works of, designed by Colonel R. Smith, 110; remarkable junction of, 112; northern district of, ib.; relieved from mountain torrents, 139 ; phenomena exlibited on, 166.
East Kalli nuddi, i. 6, 44, 206, 207, 209, 218, 222, 231, ii. 136, 543; tract between, and Eesun, i. 198; rise of, 207; country between, and Ganges, ib.; width of country from, 214 ; width between, and Kuroon, 231; proximity of, no impediment to irrigation, 242; cross-section on, 264; facilities for passing by aqueducts, 453.
Earth, cost of digging and carrying, on Solani aqueduct, ii. 443; total quantity brought from Muliewar, 444.
Earthen aqueduct (Solani), description of, ii. 417.

Earthwork (Solani), state of, in 1848, i. 428 ; rates at which executed, 450 .
Earthquakes, probable effects of, i. 31.
Eegun river, i. 44, 232, 270, 543; rise of, 81 , 248, 254 ; tract between, and East Kalli nuddi, 198; origional survey to the Rinde, 248 ; level of bed of, 256 ; distance of canal from, 262 ; increase of depression in, 264; bridge between Cawnpoor and Agra, ib.; neceasity of using, as escape from
canal works, $i b$; tortuous lines of, 268 ; parallel with Rinde, $i b$.; escapes connected with, 315.
Elevated platforms (Rutmoo dam), ii. 38 ; leight of, above canal bed, il.; connection with revetment esplanade, ib.
Ellenborougl, Lord, replaced by Sir H. Hardinge as Governor-General, i. 37.
Elopenent, anecdote of an Oade love intrigue, ii. 546.

Embankments, probable consequence of, i. 42; expense of earthen, 120; security to, 154; omission of, 180; parallel lines of, ii. 54, 69; design of, ib.; permanent, 55; Selimpoor embankment, 63; similar to those of Northern Italy, ib.; nature of, 69, 81 ; carrying of, over escapes, 433 ; maintenance of, 514 ; extension of, 515 .
Embankment slopes, curves of, on Solani aqueduct, ii. 469.
Employment of the people during famine by Government, i. 52.
Engine, locomotive, used at Roorkee, ii. 446.
Engineer (Rutmoo), proceedings of, ii. 31.
Euglish brick-kiln, causes of failure of, iii. 4 ; method of firing, $\mathbf{8}$.
Epidemics, i. 53; prevalence of, 58; pervading North-Western Provinces, 60.
Escapes, ii. 4, 112; position and number to be determined, i. 82; on Myapoor and Roorkee line, 136; into the Eesun river, 271; distance between, 315, ii. 113; Kunklul escape, ii. 45 ; relief afforded by, 59 ; action of, 95 ; position of, 113 ; capacity of outlet, il.; division of, 114; waterways of, ib.; number of, ib.; sites of, il.; purpose of, ib.; list of, on main trunk, 115 ; recapitulation of works of, 128; number of heads of, ib; number of falls, $i b$; at heads of termini at Ganges and Jumna, 542.
Escape channels, slope of bed of, ii. 114 ; at Khutowli, Muhummud Aboo's nulla, and Janni Khoord, 561; excavation of, ib.; table of rates of digging, by whom executed, and locality of, ib.

- head, slope given to tail of, ii. 114.
- water, inconsiderable amount of, i. 43; free passage for, ii. 117.
Esplanades, breadth of, i. 243; horizontal, ii. 17; distance of, from revetment, ib.; maintenance of, 111 ; sloping of, 402.
Establishment for canal works recommended by Major Baker, i. 69; for working regulators at heads of branches, 111 ; proposed permanent, ii. 598.
Estimate for canals, i. 34, 35 ; increased amount of, 85 ; of 1850 , ii. 293 ; in abstract, of Ganges canal works, iii. 292.
Etawah, i. 46, 229; district, i. 198.
- terminal, proposed length of, i. 34; sections for, 80; works onl, incomplete, 96 ; volume of water at, 198; detail of, 320 ; total length of, ib, ; only touched on by Lieut.-Col. Cnutley in original surver, 321 ; passes between Rinde and Seyngoor rivers, ib. ; drainge around, 326 ; course of, past Swaballi, ib.; passage of chird line of hollows by, ib.; course from 30 th to 65 th mile, 332; parallel to the Cawn poor branch, ib.; separation from Cawnpoor branch, 333; lines of drainuge at 58th mile, 334; course from 41 ht mile, ib.; cross draimage on, ib.; alope of country from 30 th to 65 th mile, 337; slope from 39th to 494 l mile, 339 ; works executed from Soonari, 340; course from 65th to 120 th mile, 341 ; detail of country from 65th to 120 th mile, 344 ; detail of drainage on, 345; direction from 88th to 115th mile, 347; course of, from Mahin, i6.;
course from 115th to 120th mile, 349 ; slope from 65th to 120th mile, 350; works designed from bridge of Jowallapoor, 353 ; course from 120th mile, 355 ; curves from 145th mile, ib.; centrical position between Noon and Seyngoor, 356; curve of canal from 141st mile, 361 ; course from village of Nurhea, 369; curve from 163rd to 165 th mile, 371 ; crossing of hollow at 170 th mile, $i b$.; slope from 120 th to 172 nd mile, i. ; section of canal channel from l4lst to 150 th mile, 372 ; average depth of excavation, ib.; estimated supply of heads of, 376; want of material, 378 ; design of bridges on, 379; of escapes, ib.; position of irrigation heads, ib. ; width of waterway, ib.; distance between escapes, 380 ; similar in design, \&c. to Cawnpoor, 381 ; commencement of works on, 382; state of works in 1854, 383 ; proposed establishment of feeders from, 412; capacity of clannel in reference to irrigation, 460 ; general detail of irrigation on, 464; irrigation to the left of, 466; design of works on, ii. 407; excavation on, 5:7; section at head of, 578 .
Etawah and Cawnpoor, heads of terminal lines of, i. 233.
European establishment near Gunes ghat, i. 131.
- overseer, education of, ii. 611.

Events, calamitous, of 1837-38, i. 18.
Everest's, Colunel, measurement of the great are, i. 334.
Excavated channel, method of fixing size of, ii. 539.

Excavation, depth of, i. 131; abstract of, 137 ; depth from Roorkee to Belra, 204; average depth of, 274, 340; from Myapoor dam, ii 9 ; cost of, 444; dnily task of, 445; not to be made on surface of Solani valley, 514; pe:formed by contract, 543 ; rates of, 577; from 110 th to 180 th mile, or to Nanoon regulators, 561 ; by whom performed, ib. ; sections of, 562 ; direction of works, ib. ; deseription of soil, ib.; Mr. Volk's remarks on, 563 ; rates of, per 1,000 cubic feet, 565.
Excavators, numerous classes of, ii. 544, 547.
Excess of water, means of escape for, ii. 113. Executives, abstract of aid to, i. 69; instructions given to, 74, iii. 111; rules for guidance of, ii. 439 ; extent of division controlled by, 594 ; duty ot, iii. 112.
Executive engineer (Northern Division), remarks of, ii. 447.
Expedients, protective (Ranipoor super-passage), ii. 68.
Expenditure, statement called for, i. 30 ; restriction of, 31 ; detail of, 32; saving of, 37; amount of annual, nllowed for works, 38 ; management ot, $2 l$; nbstract of, 73 ; state of, 78 ; account of, 89; enormous additional, 174 ; reduction of, 313 ; heavy, not necessary, ii. 408; general summary of, on Ganges canal, iii. 58.
Experience, application of European, ii. 70.
External drainage assisted by bridge inlets, ii. 92.

Eyta, high road from, to $\mathbf{\Lambda g r a , ~ i . ~} 251$.

F.

Failure in sinking long narrow blocks, ii. 477.

Fall, superflnous, proposed disposal of, i. 140, ii. 117; of Jrainage, i. 336 ; ogee shape of, at Myapoor, ii. 4 ; on escape lines, entail-
ing increased expenditure, 115 ; at Assoffnuggur, 518 ; at Puttri superpassage, ib.
Falls, outline of, i. 175 ; increased number of, 201; description of, ii. 68, 168 ; points at which to be built, 118 ; distance apart, ib. ; material to be used in construction of, ib. ; periodical examination of, ib:; connection of, with bridges, 119; position of, on escapes, ib.; to counteract superfluous slope, 157; list of, with 9 -feet drop, 167 ; cost of, 173 ; list of, with 8 -feet drop, 174 ; list of, with 5 -feet drop, 190 ; table relating to, 194 ; passage of, below Roorkee, 308 ; detached works connected with, 310 .
Famine, sufferings from, i. 25; security against, ib.; of 1837-8, 52; in Ireland, ib.; at Guntoor, in 1833, 58 ; of $1837-8,59$.
Fan palm-tree, i. 230.
Faussebray (part of revetment), ii. 16; object of, ib.
Ferozabad, i. 198.
Ferozepoor, i. 13; included in Major Baker's scherne of irrigation, ib.
Ferrara, i. 101.
Fever in North-Western Provinces, i. 60.
Finn, Mr. J., i. 78, 90, 97, iii. 5, 10; duties of, ii. 51; position of, ib.; brick-making conducted under, $i b$; description of system pursued by, iii. 5 ; mernorandum on method of firing flame-kilns, 9 ; mennorandum on material department, Northern Division of works, 20; dealings with brick contractors, 21.
First, or Northern, Division (Canal works), extent of, ii. 595.
Fixed channel at the Rutmoo works, ii. 45.
Flame-kilns, experiment in, iii. 4; method of firing, 9.
Flank revetments (Myapoor), position of, ii. 12; inward inclination of, $i b$; ; principle of, il. ; (Rutmoo), high elevation of, a security against accident, ii. 46.

- defences (Ranipoor), ii. 71 ; material of, $i b$.
Flood-water, ii. 53; relief of, 58 ; natural escapes for, 89.
Floods, comparatively of small account, i. 109; periodical recurrence of, 152, 465, 467; in 1848, 153; supposed bnsin of, 170; disgorgements of silt by, 172; advantages of passing over canal, 174; works of escape, for, ii. 5 ; seasons of, 29 ; effect of, on drains, 49; drainage, receptacles for, 58 ; watercourse during, 64; waterway for, 68; effect of, on Puttri works, 82; capricious nature of, 463; of 1842 and 1844, 467; nction of, 526; good of, 530 .
Flooring, below canal bed, descent of arched passages to, ii. 48; direction of, ib.; termination of, ib; ; of Khutowli masonry head, 119; design in strengthening, 467; superstructure commenced during progress of, on Solani nqueduct, 482 ; completion of, on Solani aqueduct, 512; of Puttri falls 521.

Floorings, tail (Rutmoo dam), ii. 35; horizontal level of, 74.
Fontanili, or tapping springs, in Italy, 99.
Forest land, i. 117 ; open country, ii. 76.
Forests in vicinity of Gankes, i. 219; destruction of, by flouds, ii. 466.
Forest-trees, nurseries of, ii. 93; irrigation of nurseries of, $i b$.
Foundations (Rutmoo works), description of, ii. 26 ; of Rutmoo bridge, 32 ; masonry blocks forming, ib.; of revetments, ib.; of inlet wall across Rutmoo clannel, 42; description of, ib.; massive proportions of, on Puttri works, 85 ; depth of, in bridges
from Roorkee downwards, 220; of masonry aqueduct on Solani, 461 ; dimensions of, ib.; design of, 467.
Foundry at Roorkee, ii. 351.
Fourth or Southern Division of canal works, ii. 604.

Frascr, Lieut E. (Engineers), i. 79, 92, 247, ii. 557; illness of, i. 91 ; commencement of works under supervision of, ii. 103; Khutowli escape begun by, 121.
Free ventilation, means for affording to Rutmoo drain, ii. 35.
Fuel, searcity of, ili. 8; cost of, ib.
Fukeers, adulations to, ii. 8; earthly palaces of, ib.; appearance of, ib.
Furreedpoor, i. 211, ii. 122.
Furraknbad, district of, i. 208; town of, 397. ${ }_{80}$ and Cawnpoor districts, aurveys in, i. 80.

Futtehpeor, bridge at, i. 275.

- district, i. 5.3, 82, 84.
- and Allahabad, flatness of districts of, i. 35.

Futteh khan ka Nugla, i. 334.
Futtiabad, village of, i. 321.
Futtigurl, i. 94; erection of water-gauges at, 23; navigation of Ganges to, 45; navigation above, il.
branch, i. $34,80,84,95$; proposed length of, 34 ; character of, 84 ; country examined by Mr. Dodsworth, 94; head of, 208, ii. 99, 103, 111; point of departure from main canal, i. 384; head-works, ib.; theoretical volame for, 385; to be continued navigable to Futtigurh, 386 ; preparatory surveys, ib.; projected channel of, 388 ; masonry falls on, ib.; capacity of excavated channel, 389 ; sections on, 390; table of discharges, 391 ; plan of falls on, ib.; lock-channels, ib.; position of towing-pathe, 392; list of bridges, 394; width of roadwaye, $i l_{\text {; }}$; rajbuha heads, $i b$.; escapes, 395; table of surface levels, 396 ; districts through which caval passes, 400; aystem of irrigation on, 469 ; lines of rajbuha on, 470 ; supply of, ii. 99 ; main trunk of, ib.; slopes of channel of, ib.; regulator over main canal at, 101; description of, 409.
branch head, regulators at, i. 236; section of canal from, ib.; discharge at, ii. 542 ; Oade encampment st, 546.
Futtipoor Sikri, ii. 3i9.

G.

Gadri, village of, i. 32 i.
Ganges, i. 9, 12, 26, 44, 45, 46, 131, 132, 136 ; possibility of obtaining eupply from, i. 9; irrigation of land to the right of, 15, 16, 17; debouche into plains lower than that of Jumna, 21) ; discharge of, 22 ; abstraction of water from, 23; measurements for discharge on, it.; minimum discharge from, 24; undercurrent in, 26; proposed abstraction from, ib.; injury to, expected from canal works, 39; breaking-up of sanatory committee, 40 ; discharge at Hurdwar in the driest season, ib.; probnble effects on, at Cawnpoor and Allahabad, 42; probable consequences of embankments on, ib.; calculation of decreased volume of, 44 ; ratio of percolation on, ib.; volume of water passing Campoor, ib.; navigation of, to Futtigurh, 45 ; canal from, $46,81,88$, 114,187 , ii. 4 ; value an navigable line deteriorated, i. 47 ; absence of large towns on the left bank of, id.; points to which
boats reach, 48 ; navigation of, in dry season, ib.; advantages of improving, 49; naturally dangerous, 50 ; original idea of canal from, 51 ; branch line to, at Cawnpoor, 82; canal bearing upon, 84; enstern watersleds, 112; discharge of main stream of, 123; high steppes of, 169 ; termination of branch canal in, 198 ; direct line of communication with Jumna, 219; entry of Cawnpoor terminal into, 250; Hurdwar branch of, ii. 4; branch of, at Myapoor, 6 ; immediate action of, 13 ; improved method of bay on canal, $14 ;$ lime boulders collected in bed of, 51 ; bed of, 86 ; floods of, 96 , 109; region above, 114; sandy tracts of, ib. ; at Allahabad, 161 ; state of during high and low water, 403; watershed of, 465.

Ganges canal, seriously considered, 18 ; cost of contingencies, 28 ; commencement of works of, 29; want of sympathy with project for, ib.; stoppage of works on, 30; interruptions to works of, $i 6$; resumption of works of, ib.; cost, 31 ; reatriction of expenditure on, ib.; trangfer of executive duties, 32 ; objections to the circuitous line, 36 ; estimates of projects for, 37; aided by Mr. G. Clerk, ib.; Major Baker assumes charge of, ib.; résumé of works, 38; commenced during the Afghan War, 39; difflculties to the progress of, ib.; interrupted by Sikh invasion, ib.; works stopped by departure of Major Baker, ib.; opinions in England on, 40; whole question put before government, $i b$; ; assembling of committee on, $i b$. ; report on, $i b$.; vigorous prosecution of the works determined on, i. 40; supply of, 45; traffic during dry months, 50; centrical course between Ganges and Jumna, ib.; comparative advantages of, 61; character of course. ib.; level of, 62 ; difficulties encountered by director, 67 ; view of head above Hurdwar, 76 ; state of expenditure, 78 ; Dew era in history of, 96 ; list of staff, when opened, 97 ; head works determined by priests, 124; tortuous course of, 144; dimensiona of, ib.; detail of project No. 2, 148 ; sections of canal, ib.; surveys of made by Lieut.-Col. Cautley, 149; detnil of project No. 3, 150; sections of branches, ib.; conclusions regarding, 162 ; line of between Ranipoor and Rutmoo torrents, 164; plan of super-passage of Ranipoor and Rutmoo torrents, 165 ; direction of from Rutmoo bridge to high land of Doab, 183; section of, at Yeeran Kulleeur bridge, 185; map of country upon which works projected, 196; course of, from Ginnowli, 254; contact with Rinde hollows, 255; breaking up of eixth division, 320 ; distribution of water on, 423; order of precedence of works, ii. 6; number of points for regulating supply, 109; falls on, 169; advantages to be derived from facilities of water carriage, 319 ; facilities for passage of craft both up and down stream, ib.; general design for, 436; effects of flood upon works, 489 ; cheapness of embankmente and earthworks, 582 ; current expenses, 583; expenses of establishments, ib.; ordinury repairs, ib.; tables ehowing number of men and amount of pay, 584-593; passage through low lands, 539; new era in works of, iii. 5; investigation into sanitary state of, 24 ; measures for execation and management as connected with report of sanatory committee, 49; general bummary of expenditure on, 58; quarterly syatem of acoounts and bills practised on, 59; data for projecte on, 142.

Ganges canal, professional library, list of books in, 235. e eanatory committee, resumption ${ }^{-}$of labours by, i. 40.
Ii. khadir, i. 36, 88, 113, 122, 123, ii. 436. iii. I ; estimated return on, i. 23 ; site of proposed works visited by governorgeneral, 40; southern angle of, 41; tracts of, 44; surveys for contour of, 98 ; peculiar feature of, 117; works for admission of country drainage in, ib., ii. 58; works in, 60; works for escape of country drainage in, 61.
i. 40 . i. 40.
ii. 106.

Gangetic valley, i. 45.
Gangs on canal works, regulations for government of, ii. 112.
Gangsi, village of, i. 320 ; diminution of width of country at, 332 ; shallow tract passed near, 344.
Gate, drop, used on Jumna regulators, ii. 13. Gates, sluice, description of, ii. 39; how raised, ib.; specific gravity of, ib.; beeping of, in vertical position, ib.; pressure of water in front, ib.; supply of water admitted by, into canal, ib:; height of supply admitted by, ib.; dropping of, ib.; restoration of, to recumbent position, ib.; when not in use, $i b$.; main object of, $i b$; front apparatus for raising, ib.; effect of back-water on, ib.; design of, to whom due, ib.; reduction of dimensions of (Rutmoo inlet), 45; on Futtigurh branch head, 100 ; number of men provided for cach, 112; height of flooring (Khutowli escape) dependent on working of, 119.
Geesoopoor bridge, i. 221.
General Gunj (Cawnpoor), passage of canal through, i. 300; purclase of house property, in, is.
General orders, extract from, iii. 24.
Genoa railroad, i. 99.
Ghat, Gunes, ii. 10 ; situation of, i 125 ; head works at, ib.; dam at site of, iL 6. - revetments, cost of building, i. 26, 186 ; of pilgrims, Hurdwar, 122 ; improved facilities for bathers at, 129, ii 9; proposed improvement of, ib.; steps of access to, ii. 7, 18; description of ghat at Myapoor works, ii. 16; flanks of, semicircular (Caynpoor terminal), 403.
Ghatumpoor, purgunna, ii. 157.

- town of, i. 323 ; means of effecting irrigation in purgumna of, 367; rajbuhas leading to, it. 157.
Ghnzioodeennuggur, i. 218, 219; excess of high water on bridge at, ii. 464.
Gholam Kadir, work executed during government of, i 8.
Giliror, termination of Lieut.-Col. Cautley's surveys at, i. 321.
escape, i 96 ; situation of, ii 149 ; diagram of, 150 ; disposition of works in, $i b$; materials used in, 151; cost of, ib.; by whom begun and completed, it.
Gillowi, course of Rinde near, i. 255.
Ginnowli, high village of, i. 252; objects of escape at, 253; bridge of, 258, ii. 137.
Girree, junction of river with Asun, ii. 466. Giree, village of, 1. 370.
Godaveri, turning waters of, to purposes of irrigation, i. 52.
Gojar, village of, i 219, 220.
Goodw yn, Lieut., i. 78; works at Myapoor brought to completion under, fi. 7; letter of, to Lieut.-Colonel Cautley, iii. 312.

Goodwyn Captain A. G., i. 97 ; bolt for holding down rear sluice-gate, ii. 39 ; supervision of outlet in Ganges kbadir by, 63; experiments of, 493; remarks of, 495; paper ou block-sinking by, iii. 268.
Goomawalla village, rise of line of drainage near, ii. 416.
Goonala bridge, i. 292.
Goorowli, i. 284.
-_ jheel, drainage from, i. 284.
Gopalpoor, i. 261 ; bridge of, 266.
Gopee village, drainage at, i. 251.
Gosainwala marsh, i. 170.
Government, British, canals restored by, on Jumna river, i. 4; instructions issued by, 64; perseverance of, 89.
Governor-general, change of intentions of, i. 30 .

Gowri, village of, i. 289.
Grand trunk road, i. 234; crossing the canal, ii. 91.
——Ganges canal, rules for keeping accounts on, iii. 116.
Great ghat (Hurdwar), i. 127.
Grooves, use of, ii. 13.
Ground plan, original, of Myapoor works, ii. 7.

Guddunpoor, village of, i. 251.
bridge, 257, 259 ; traces of bhoor or sand-hills near, 257.
Gujehmow, village of, i. 321.
Gunes ghat, ii. 10; situation of, i. 125; head-works at, ib. ; works at, 129 ; converted into line of stone steps, 131.
Gungootri, snows of, ii. 8.
Gunnespoor, cut made by zumendars of, i. 281.

Guntoor, famine in 1833, i. 58.
Gurl, town of, i. $114,145,150,185$, ii. 79; flouds from high lands near, i. 145.
Gurhewa, village of, i. 289.
Gurmookhteesur, i. 45, 48, ii. 103, 463; erection and discontinuance of water-gauges at, i. 23; position of, 24 ; discharge of water at, ib.

- ghat, i. 24, 27; observations made at, is., ii. 463.

Gwalior, campaign, untoward effects of, i. 32; course of Chumbul on frontier of, ii. 162.

H.

Habul, i. 218.
Hall's brick-making machine, ii. 51 ; namber of men attached to, iii. 10 ; out-turn of bricks from, ih.; table showing amount and cost of bricks made by, 11.
Hamilton, Mr., Secretary to Government, North-Western Provinces, letter addressed to, i. 30.
Hansaka Nawada, hollow near, i. 294.
Hansi, i. 46, 55, 56, 109, ii. 379; sickness in, i. 54 ; cnuse of sickncess in, 56 ; capital of Hurriana, 56.

- canal, i, 62.

Mapoor, town of, i. 214; station, 238.
Hardinge, Sir H., replaces Lord Ellenborough as governor-general, i. 37.

- Iord, Capt. Cautley's interview with, i. 39.

Hatrass, i. 198, 228; town of, 95; "line of irrigation," 376, 400, ii. 409.
Ilaupper stud lands, means of irrigation for, i. 452.

Heads of branches, description of, ii. 28 ; similarity of, with regulators, ib.; purposes of, $i b$. ; action of, $i b . ;$ working of the regu-
lators at, 111; establisbment to be maintained at, ib.
Heads of irrigation in upper portion of canal, i. 88; in lower, $i b$.

Health, circumstances affecting, i. 147.
Heights, barometrical, i. 20, 21.
Herbert, Captain, i. 24.
High military roads, anticipation of, ii. 222.
Higl-water mark, indications of, ii. 28.
Hills, distance of, from canal, i. 140; degradation of, ii. 65 ; cause of, 66 ; detritus from, $i b$.
Himalayan rivers, i. 123.
Himalayas, the, ii. 109 ; southern slopes of, i. 3, 12 ; tributaries from, 45 ; melcing of snow in, 47.
Hindoos, demand for reservoirs among, i. 67; Sunday as a holiday to labourers, 89 ; atonement to, 131 ; discoveries of ancient sculpture of, 288 ; love of trees among, ji. 8.
Hindun river, i. 9, 58, 107, 217 ; parallel to West Kalli nuddi, 9 ; supplies of water od, ib.; Captain Debude's proposal to use water of, 15 ; estimated supply from, 43, 44 ; rivers tributary to, 111 ; close approximation of cadal to, 214 ; junction of, with Jumna, 218; measurements on, 219.

- and Ganges rivers, proposed irrigation of lands between, i. 27.
Hindustan, value of irrigation in, i. 51 ; private granaries of, 52.
Hindustani kilns, iii. 4 ; good results of, 5 ; return of, 8.
Hissar, i. 40, 46.
Hodgson, Lieutenant (Bengal Engineers), i. $80,98,319$, ii. 140 ; in clarge of 4 th division, i. 19; gradual reduction of bridge waterway by, 313; success of works under, 320 ; ingredients of cement used by, ii. 406; rates at which works were executed by, 572.
Hogan, Mr. W. D., i. 97.
Holland, method of brick-making practised in, iii. 4.
Hoorkapoor bridge, i. 308.
Horses, number proposed for cartage on Solani aqueduct, ii. 517.
Houses for machinery, ii. 404,
Hume, Lieut., i. 80.
Humeerpoor, i. 229.
Hunooman, discovery of figure of, i. 288.
Hurdoongunj, i. 231 ; town of, 232.
Hurdwar. i. 16, 20, 25, 26, 44, 88, 115, 117, $124,125,127,128,131,185,197$, ii. 109 ; operations commenced nt, i. 19 ; country westward of, 21; total fall from, to Belra, $i b$; height above the sea of, $i b$.; erection of water-gauge at, 23 ; discontinuance of water-gauge at, il.; results of measurement at, 24 ; discharge of water at, ib.; discharge of Ganges at, in driest season, 40 ; abstraction of water at, 47 ; line to Allahabad tested, 82; channels to south of, 115 ; point of levels between, and Kunkhul, 118; ghat of pilgrims, 122 ; position of, 123 ; place of pilgrimage connected with, ib. ; enlargement of escape channel at ghat, 127; proposed works of canal near, 128 ; communication with Kunkhul, 131; regulating bridge at, ib.; road from, to Sularunpoor maintained passable, 154 ; inlet water througli open channel of branch, ii. 4 ; fair, pilgrims frequenting, 8 ; improvements in, 9 ; angle of hills at, 65.
Hurriana, i. 50 ; district of, i 56.
Husli canal, i. 4.
Husseyrun, fort of, i, 280; bridge of, 292.
Uussungurh, town of, i. 222.

Hussunpoor nulla, i. 269, 270, ii. 142.
Hutchinson, Lieut. C., i. 80; cross section of Pandoo taken by, 306; goes on medical certificate to England, ib., 319; excavation by, ii. 572 ; remarks of, ih.
Hutpaon drainage, i. 269; hollows, ib.
Hydraulic instruction, works for, near Turin, i. 100 .

I.

Imli, town of, i. 114, ii. 416. nulla, ii. 524.
Impervious matter, interruption to drainage by deposits of, ii. 36.
Incidence, direct, amount of water collected by, ii. 59 .
Indhunna, village of, i. 289.
India, Upper, character of rivers in, i. 3; canal designing in, 7; value of irrigation in, 51 ; terrible forms of famine in, 52; plaing of, 123.
India and Italy, equal force of torrents in, i. 101 .

Indian government, recommendation of, i. 25. - administration, changes in, 37.

Indus, river, i. 3; specinens of canals in countries bordering on, 4 ; law of deposil on, 170; section of, laken by Major Baker, ib.
Information, comparative want of, $i .149$.
Inlet, application of term, ii. 4; object of building forming the, 5 ; action of, as a darn, 27; of what consisting, 29; sluices of, ib.; flanks of, 31 ; revetment or down-stream side of, $i b$.

- across Rutmoo channel, ii. 41 ; addition of flanking defences to, ib.; foundation of, $i b$.; described, 42 ; building of, $i b$.; foundation wall on which built, ib.; satisfactory result of, ib.; Eaving of expense in plan of, $i b$; application of self-regulating gate to, 44 ; slope of sill of, ib.; correspondence of sill of, with slope of river bed, ib.
- drains, connection of, with cattle ghats, ii. 438 .
- masonry works, i. 136.
-Selimpoor, ii. 80 ; description of, ib.
-- water, admission of, i. 137; water, oc-
currence of, precluded, ii. 89.
—_works, ii. 46; protection of, ib,
Iulets, forming part of bridge and rajbuba clannels, ii. 3, 89 ; benefits derived from, 4; peculiarity of positions and uses of, 5 ; of what consisting, 89 ; arrangement of, $i b$.
Inundation, on circuitous route, i. 119; bnckwater of, in Rinde hollows, 261 ; country relieved from, ii. 21 ; up-stream, remedy for evils of, 26.
Iron boats used for fixing bridges in position, ii. 312; for transport of materials, 453.

Iron and wood for general purposes (department, Roorkee workshops), ii. 342.
Irrigation, change introduced by, i. 56 ; in Lombardy and Venice, 100; benefits of, to right side of Ganges, 190; unknown in Ghatumpoor, Kora, and Jar purgunnas, 195 ; amplemeans for, 238; watershed cut by irrigation channels, 285 ; system of levying pryment for, described, 427 ; means of, between Seela nulla and West Kalli nuddi, 451; facilities of supplying, from l10th to 180th mile of canal, 452 ; general detail of, on Cawnpoor and Etawah terminals, 460; regulators for, ii. 96, local equilibrium of channel disturbed by, ii. 112; water required for, 436.

Ismailpoor, village of, i. 334.
Italian canals, comparatively small volumes of, i. 91.
-_module, i. 425.

- canal works, sluices of, ii. 303.

Italy, canals in, small, conpared with those in North-Western Provinces, i. 102.

- and India, equal force of torrents in, i. 101.

Irrea, i. 99; weir at, 103.

J.

Janni Khoord, i. 215; leight of land of, $i b$.
——escape, i. 94, 216, 217; object of, ii, 115 ; passage of, over high land of Doab, 125; built on same plan as Muhummud Aboo's escape, ib.; diagram of, ib.; description of, ib.

- bridge, i. 209, 217.

Jansuth, i. 212.
Jao, village of, i. 32 G .
Jaoli, masonry fall at, i. 192; falls and works at, 208; waterways at, 389.
falls, ii. 181; foundation of, ib.; paterials of, 182; cost of, $i b$. ; by whom built, ib.; arches of, 211.
Jar, town of, i. 34, 194, 323; survey at, 298.
JJarcha, bridge at, i. 221 ; town of, 416 .
Jatonwala, mountain torrent, i. 109; drainage of, 111.
Jewur, i. 220.
Jhams (tools used in well-sinking), ii. 33; description of, 475 .
Jheels, extensive serics of, i. 284.

- and marshes, line of, i. 41.

Jhelum, river, i. 4 .
Jinns, or genii of Eastern fable, i. 7.
Jinwar jheel, i. 260; necessity for heavy embankment near, i. 254; description of, ib.; course of canal channel through, ib.; character of Eesun river near, 255.
Jirowli, bridge at, i. 258.
Jogivalla jhecl, i, 117.
Johnstone, Lieut., report on Noon river by, i. 363; line of canal chosen by, 367.

Jones, Captain, appointed ouperintendent of canals and irrigation in Rohilkund, i. 11 ; author of reports on irrigation, 12.
Jourassi, situation of town of, i. 112, 114.

- Noornugger, and Sookurtal, abrupt transition from high to low levels near, i. 16.
Jouraal of Asiatic Society, extracts from, ii. 3;3-376.
Jowalagurh, village of, i. 7,211.
Jowalapoor, i. 34, 38. 85, 114, 115, 131, $133,140,177$; no marks of drainage at, 134; inlet for druinage to Kunkhul, 138 ; bridge of cross-communication at, 77, 136; outline of canal works from bridge at, $1 \% 5$. ——bridge, i. 181 , ii. 89.
- inlet, i. 135, 137, 179; width of waterway of, ii. 59 ; uniform design of, $i b$.; sill of, 60 ; cost of masonry, 61.
Juggurnath, barning plains of, ii. 8.
Juggutpoor bridge, i. 308.
Juleysur, town of, i. 326 ; nulla. 327.
Jullalabad, i. 8, 213, 215, 220; width of country at, 214.
Jumna, i. 12, 14, 16, 27. 34, 35, 45, 49, 51, 57 , 81, 107, 109, 112, 113, 122 ; cute and dams on. 4 ; example of canals of, 5 ; canals, it., $4{ }^{5}$; cxample of, cited, 26 ; diacharge of, at debouche from Sewaliks, 42; disappearance of water of, ib. ; resulte on, from Delli and Doab canala, ib.; probable consequence of embankwents on, ib.; novigable at

Agra, 43 ; average dimensions of, opposite Agra, ib. ; discharge of, $i b$. ; formula of discharge of, ib.; continues a navigable river, 44 ; parallel case of, cited, ib.; navigation of, important to large tuwns, 47 ; water carriage by, ib.; navigation of, in dry eeason, 48 ; tonnage on, ib.; fleets of boats on, ib. ; points to which boats reach, ib. ; advantages of improving, 49; naturally dangerous, 50 ; course from Delli to Allahabad, ib. ; sickness on canals west of, 54 ; valley of, 55 ; benring of canal upon, 84 ; canals supplied from, 107; high steppes of, 169 ; termination of branch canal in, 198 ; characteristic feature of left bank of, 298 ; most efficient part of, for navigation, 363 ; high land overlooking, 371 ; old method of bays on, ii. 14 ; diagram of, at Raj Ghat Mundi, 466.
Jumna canals, i. 29, $50,52,140$, ii. 13; inconvenience of lining out of, i. 62 ; example of circuitous line of, 118 ; circumstances of contact with torrents, 164; absence of uniformity of surface levels on, 425 ; volume of water on, ii. 13 ; description of works on, ib.; bays for, 14 ; quick method of opening and shutting bays, ib.; economy of labour required iu, ib.
-_ kladir, i. 220.
——regulators, ii. 13; drop-gate on, ib.
——and Ganges, irrigation of country between, i. 15.
Jumna and Sutlej, prosperity of country between, depending on canals, i. 51.
Jungle, drainage of, i. 143; tract of Puttri catchment basin, ii. 72.
Junkut, fort of, i. 284, 285.
Junsoi bridge, i. 259.
Jureyra, village of, i. 326.
Jursen, high ground near village of, i. 370.
Jushtamow village, i. 358.
Jusranuh, i. 333.
Jutpoora bridge, i. 213.

K.

Kalli nuddi, i. 20; rise of, 81; distance between East and West, 206; connection of canal with West Kalli nuddi, ii. 116.
Kalpi, i. 46, 50, 229; high roed from, to Cawnpoor, i. 293.
Kalumga canal, i. 12.
Kane river, junction of, with Jumne, i. 34. Kansra forest, i. 146.
Fand Soukrouda forests, drainage of, i. 146. Kasimpoor, works at, i. 234. - escape, i. 232, ii. 115; especial duties to be performed by, 133; diagram of, ib.; connection of, with Moonda Khera escape. ib. ; proposition concerning, 134; method of construction of, ih.; materials used in, 135 ; by whom commenced and completed, ib.
——bridge, ii, 133.
Kay, Mr. W., i. 78, 97 ; outlet in Ganges khadir conatructed by, ii, 63.
Kesoopoors, line of drainage rising near, i. 347.

Keylunpoor bridge, i. 257, 258.
Keyrara, sweep of Etawah line round, i. 327.
Keyseri ka Poorwa, interception of drainage near, i. 348.
Khadir, i. 24, 25, 37, 91, 109, $110,113,117$, 140, 198, 202, 203, iii. 1 ; low land between Hurdwar and Erst Kalli nuddi, survey of, j. 16; (Ganges) proposed examination of, 18; proposed survey of western portion
of, 21 ; circles and levels on, $i b_{1}$; proposed estimate of works through, 22; eatimate on, 23; supplemental estimate on, ib.; cost of canal works in, 28 ; Delhi canal in, 53 ; high land skirting, 55, 108 ; included in lst Division, 85 ; insular tract of, 114 ; labyrinth of river to south-east of, 116 ; examination of, in 1836, 117; slope of canal bed through, 142; action of deposits in, 169 ; course of canal through, 184; irrigation in, 191; cut made into, 204 ; works for admission of country drainage in, ii. 3,58 ; lines of drainage peculiar to khadir lands, 23; execution of works in, 50 ; effect of Mr . Login's measures, ib.; (Ganges) devoid of escape works, 112 ; lockage in, 308.
Khadir rivers, peculiarity of, ii. 416.
Kheeri, town of, i. 184; pass, ii. 413.
Kheri, town of, i. 114, 118.
Khodara head, i. 21I.
Khulla, i. 6, 214.
Khoord, Janni, object of escape at, ii. 115.
Khoorja, town of, j. 224, 226, ii. 134; course of canal to, i. 222 ; sand ridge in neighbourhood of, 223.
Khujoori, village of, i. 293; bridge at, 308.
Khutowli, i. 206 ; depth of cutting to, 208; cultivation south ol, 215 ; elevation of upper esplanade of canal embnokment, ii. 120; magoitude of canal embnokments at, ib,; supports for windlasses $n t$, ib. ; relief of waterway at, ib.; design of work for, $i b$.
bridge, i. 212 ; vicinity of Khutowli escape to. ii. 115.

- escape, i. 210, 212 ; section of canal from, 237; width of waterway at, ii. 115; discharge of, ib.; object of, ib.; situation of, 11G; map and section of, ib.; works on, 119 ; disposition of slopes on, ib.; data on which arranged, ib.; cost of excavation of, ib.; material used in, 120 ; rates at which works were executed at, $i b$.
Khyr, town of, i. 293.
Khyrnupgur bridge, i. 293.
Kier, Surgeon A., report of, iii. 51.
Kilns, English, supply of brick for, ii. 26.
Kirsunni (or Kristua) river, i, 7, 57.
Kistna, turning waters of, i. 52.
Koel, $\mathbf{j} .79,84,94$; in third division of canal works, i. 95 ; brauch canal, 127, 198, ii. 409, 543 ; remodelling of Ganges canal from head of, i. 198 ; headworks nt, 229 ; disclarge at, 240; width of branch channel at, ib.; declivity on branch canal, 404 ; situation of head at, 406; slopes, 407; datil for canal, 408; dispossl of supply at, ii. 105.
—— branch head, ii. 105; similarity of works to those at Bolundshulur head, ib, ; angle of departure of. ib. ; slope of bed of, ib.; proposed establishment for, 111; discharge at, 542.
- drainage, i. 228 ; irrigation, it.
- regulators, ii. 105 ; high water on, il. ; table of diacharge of, ib.
Koonchul ka Nugra, village of, i. 262.
Koondun, bridge at, i. 308.
Koonjnawur passes, i, 112, 113.
Kooreet bridge, i. 267.
Koorsauli, village of, i. 293, 305; bridge n, 308.

Kot, village of, i. 220; low land near, 416 .
Kristna (or Kirsunni) river, i. 7, 57.
Kutcha pukka, cost of, as used in choki buildiage, ii. 290.
Kukwan, village of, i. 286; first-class choki at, 280 ; course of canal from, to Ganges, 293.
-bridge, outlet into Pandoo river near, i. 290; Faterway, ghate, \&c., 293.

Kukwan escape, ii, 144; description of, ib.; diagram of, 145 ; materials used in, 147; by whom begun and completed, ib.
Kulhore bridge on the Rinde, waterway of, i. 265.

Kulsea, i. 126; works at, 111.
regulator, ii. 108; situation of, 109; connecting Suharunpoor with Behut and Raipoor, $i b$.; traffic over, $i b_{\text {; }}$; petty pilfering of iron from sleepers and windlass apparatus, ib.; working of machinery of, ib.
Kumalpoor, village of, i. 218, 294.
Kumbliera, i. 202.

- bench-mark, levels extended to, i. 118.

Kundpoor, village of, i. 261.
Kunkhul, i. 117, 124, 125, 133, 134, 135, 138, ii. 5, 109; proposed abstraction of water supply at, i. 27; works commenced near, 29; bridge of cross communication, $77,136,185$, ii. 110 ; channels to south of, i. 115 ; position of, 124 ; communication with Ilurdwar, 131; drainage near. an illdefined hollow, 134; description of inlet at, 137, ii, 59; mills to be established on lower side of, i. 136; outlet on left bank of, ib., ii. 437; three inlets on right bank of, i. 137; escape at, ii. 45; local depression of country at, 60; cost of inlet masonry, 61; design of mills at. 372 .

- drainage line, experience gained from discharge of, i. 135; shingly nature of, ii. 59 .

Kunkur (block), use of, i. 221, 378.
Kunnukpoor, sweep of drainage round village of, i. 251.
Kunsowa, village of, i. 280 ; proposed relief of canal at, 281.

- bridge, 292; bed of canal at, 282.
- nulla, i. 334.

Kuraoli, bridge at, 267.
Kurnal, i. 14, 55, 59, iii. 24; removal of cantonments from, i. 54, 57 ; sickness in, 54 ; situation of town and cantonment of, 55 ; canal near, 56; supply of district of, 107; causes of unhealthiness in, iii. 28.
Kurri (or rafter) used in superstructure, ii. 55, 304.
Kurtoon river, i. 84, 220, 328 ; rise of, 81 ; course of, 222 ; distance of from East Kalli Nuddi, 225; heads of, 222.
Kussudh, bridge at, i. 275.
Kutarpoor, head of irrigation for, i. 136; village of, ii. 437.
Kutcha bricke, abstract of, iii. 4.
Kuti fall (Mundelkund), height of, ii. 161.
Kuttana, village of, i. 334.
Kuttr Puttur canal, causes which led to the execution of, i. 12 .
Kythul, unhealthy flats of, iii. 28.

L.

Labonrers, difflculties in procuring, i. 312; required in case of emergency, ii. 516.
Lago Mnggiore, the source of the Ticino, i. 100 .

Lal Durwazn pass, ii. 413.
Lamh, Lieut., i. 98; assistant to Lieut. Hodgson, i. 320.
Land carriage, enormous cost of, ii. 320.
-drainage, remarks on, ii. 36.

- long strips of, forming catchment basins of Hanipoor and Puttri torrents, ii. 65.
Landoura, i. 112.
Lathes, deacription of, ii. 332.
Leakage, water derived from, ii. 30; passing off of, i h.
vol. III.

Left parapets (Ranipoor super-passage), ii. 60; width of, ib.; height of, ib.; inlaud continuation of, il.; expansion of, ib.
Level, sudden changes of, i. 311.
Levels, i. 215, 224, 232; series of, from Badshahpoor, $\mathbf{j} .17$; line of, on the Ganges Khadir, 20; retrogression of, 57, 529, 532; intermediate, between Kheri and Roorkee, 118; relative, of beds of Pandoo and Liesun, 291; description of, from Kukwan to Cawnpoor, 306; for Ranipoor works, ii. 72.
Liburheri, i. 200, 204; bridge at, 205.
Lime used in Rutmon works, ii. 51; excess of, over sand, in Alligurl, Mynpoori, Etawah, and Casnpoor districts, 177; abstract of, furnished to works, iii. 21.
Lines of rajbuha (subordinate), connection of main canal with, ii. 59.
Link, connecting, betwcen wings and outward defences (Ranipoor super-passage), ii. 71. Londhooa, village of, i. 251.
Local depressions, example of, i. 338.
Lock (canal). description of, i. 181; at I'uttri works, ii. 307; Ranipoor works, ib.

- chambers, ii. 67; dimensions of, 304; materials of which built, 305; flanking of, 403.
- channel (Ranipoor super-passage), position of, ii. 74.
(canal), description of, ii. 306; in the Khadir, termination of, 314.
Locomotive on the Solani aqueduct, accident to, ii. 445; rate of, 449; trials, $i b$; inapplicability of, ib.; design of engine to, 450.
Login, T., i. 78, 97; head-quarters of, ii. 95 ; drainage cut of, 29; design of, for raising sluice-gates, 39; scheme of, experimented upon, 40; success attending drainage works by, 50 .
Loliya Jheel, i. 347.
Lombardy, i. 99; river works in, full of interest, 101; works in, adopted as models, ii. 70.

Londiana, i. 13, 14; system of brick-making. iii. 7.

Lounda Leniwala torrent, i. 34, 136; experience gained from discharge of drainage line, 135 ; inlet into the Kunkliul near, 137; quantity of flood water in drainage live, 138; evil of admission of water at inlet, 179 ; connection of drainage with shingle, ii. 59.
-_ inlet, ii. 59; width of water-way of, ih.; unifurm design of, ib. ; sill of, 60 ; cost of musonry of, 61.
Lower Provinces, boats leave Agra for, i. 43.
Low land (nbove Rutmoo inlet), improvement of, ii. 54.
levels, tendency of, from Roorkee to Assoffnuggur, ii. 519.

- water in canal channel, use of inlets during, ii. 91.
Luchmunpoor village, meeting of two lines of drainage at, i. 289.
Luknanpoor, works constructed on Etawal, terminal from bridge of, i. 374.
Lulta Rao (mountain torrent), description of, i. 126.

M.

Machine for block-sinking, ii. 476.
Machinery, brickmaking, i. 91 ; description of, attached to Myapoor aluice-gates, ii. 15; (Roorkee workshops), 325; improvements in, 333.
Machooa bridge, i. 234.

Madras, southern, i. 51 ; presidency, ii. 165.
Main buildings (Puttri), drailage of esplanade in front of, ii. 92. - canal, longitudinal axis of, ii. 106; interruption to works of, 117.

- channel, equilibrium disturbed from abstraction of water from, ii. 112.
Mainwaring, Lieut., i. 97.
Malaria, introduction of, dreaded from irrigatinn, i. 30; English vicws on, 40; necessity for sanatory inquiry on, $i b$; as connected with canals, 53 ; not deemed sufticient to stop canal worke, 63; test of, iii. 25.
Mamun, bridge at, i. 225; village of, ii. 128.
Mango-trees shading canal roadway, i. 246; situation of, 247.
Mango graft plantations, ii. 285; uses of, ib.
Manholes (Rutmoo works), for clearance and ventilation, ii. 35, 49 ; direction of, ib.; number of, given to each pier and abutment, ib.
Mantua, i. 99.
Marshes, reed. i. 55.
Marten, Mr. H., system of account-kecping introducel by him into Roorkee workshops, iii. 21s.
Masonry works: action of hars, i. 57; dams over Muskilra and Nogong torrents, ib.; position and passage of falls, 150,122 ; descents, 150, 201, ii. 68, 119; dams across mountain torrents, i. 160; opening for Bochna nulla, ii. 4; platforms (Dhunowri works), 26,20 ; commencement of Dhunowri masonry work, 28 ; description of drain attached to liutmoo works, 30, 34; blocks forming foundations of revetment and bridge (Rutnoo works), 32 ; description of walls at Rutmoo regulating bridge, 47; parapeted passages, 64; protection of foundations (Ranipoor works), 68; plan for protecting masonry work at Ranipoor, 69 ; floors of bridges, 100 ; overcoming slope by permanent masonry works, 114; description of Khutowli escape head, 119; channels, 301 ; superior, description of, in terminating bastions of Solani aqueduct, 455; aqueduct connected with Solani torrent, 459.
- for arch (Ranipoor super-passage), thickness of, ii. 73.
- slope given by raising, ii. 74.

Mazons, discharge of, i. 92 .
Materials, abuudance of, i. 22; no contractors for supply of, 67; amount expended on Myapoor works, ii. 19; collection of by mountain torrents, 40; description used in Ganges kliadir works, 62; description used in Koel branch, 105; transport of, 453; cost of, in northern division, iii. 21.
Mathematical instruments, manufacture of cheap, ii. 336; department, 345.
Matter, degradation of, i. 173.
Medical committee, instructions of, i. 69; sanatory measures of, 82 ; leading point in repurt of, ii. 541.

- examinations, summary of, iii. 48.

Meerut, i. 38, 213, 214; remains of canal to north-west of, i. 6; groves and gardens in neighbourhood of, il.; scheme for canal through district of, 9; high road from, to Suharunpoor, i. 212, ii. 116.

- cantoliment, i. 211.
- district, i. 57, 79, 201; sickness in, 58; irrigation of, 107.
Memorandum on northern division of canal works, iii. 20; circular, to executives on Ganges canal, 154.
Merrick, Lieut., i. 79, 98; Nanoon regulators begun and completed by, ii. 108.

Miasma, probable introduction of, i. 32.
Milan, i. 100.
Milanese module. i. 99, 431.
Milestones, numbered from Myapoor to Nanoon, i. 245; situation of, ib.
Military Board, letter addressed to, i. 30 ; letter from. 31.
Mill channel (Bahadoorabad), ii. 45 ; (Ranipoor), 67.
Mills (corn), machinery for, ii. 370; list of, 371 ; connected with waste chambers at falls, 373; particulars of, on Eastern Jumna canal, 376 ; return to Government on, ib.; profts on, 377; expense of keeping, 378; stones used in, 379; Belidor's description of, in Provence and Dauphiné, 380.
Mirzapoor bridge, i. 275.
Mitchell's screw-piles, ii. 57 ; adaptation of $i b$; use of, for mooring purposes, 58.
Model of lion on termini of masonry aqueduct, Roorkee, i. 471.
Module, Milanese, i. 99, 431.
Mokumpoor bridge, i. 267.
Moncaleri, i. 99.
Moonda Khera, works at, i. 229.

- escape, i. 226, 234, ii. 115, 128 ; description of, 129; diagram of, 130; sluice gates, 132.; cost, $i b$.
Moongawala well, level of water in, i. 141, ii. 76 .

Moosanuggur, town of, i. 229, 321; regulator, ii. 96.

Mootazabad, village of, ii. 130.
Mora canal, i. 103.
Moradnuggur, town of, i. 58, 213, 216, 218; bridge at, 217; list of works from, to Geeseepoor bridge, 221.
Moulders, brick, troublesome character of, iii. 10 .

Mounds, i. 114; numerous in the Cawopoor district, i. 287; description of, il.; ruined forts on, ib.; proposed excavation of, ib.; influence of, on draidage, 288.
Mountains, proximity of, rendering escapes necessary, ii. 538.
Mountain torrents, as connected with Eastern Jumna canal, i. 110 ; character of, 147; works for counteracting effects of, ii. 3; connected with Rutmoo works, 40; miscellaneous materials collected by, $i b$.
Mousul Bey (engineer), i. 104.
Mozuffurnuggur, ii. 101.

- district, i. 79, 80, 93, 201, 207; works in, 76; irrigation of, 107; character of soil of, 450; advantages of canal irrigation to, ib.; khureef, or rain-weather crops in, ib.; means of irrigation of, 451.
Mud, use of, as a cement, ii. 288.
Mudhoopoor bridge, i. 308.
Mudsan, town of, i. 222.
Muhdeepoor, village of, i. 208.
Muhewar village, i. 36, $119,183,186$, iii. 9 ; approach of canal to, i. 185; line of railway to brick manafactories at, ii. 422; brickFilns at, iii. 4 .
Muhmoodpoor, i. 201, 205; want of uniformity in navigable cuts nt, ii. 315; canal alignement at, ih.; disposition of works at, ib.; site of tanks at, $i b$. ; abnormal position of lst-class choki at, 316.
- falls, ii, 178 ; remarkable feature in the construction of, ib.; foundations of, ib.; aprons of, 179; platforms of, it.; bricks used in, ib.; quantity of materisls ased in, ib.; by whom commenced, ib.; cost of, 180.
Muhummud Aboo Khan, ancient canal of, i . 211, 216 : excape of, 217.
Muhnmmud Aboo's canal, i. 6, 7, 20; site of embankment on, 9; design of channel same
as Khutowli, ii. 123; general deacription of, 124.

Muhummud Aboo's escape, i. 217, ii. 115 ; general degcription of, 121.
Mujla, fort of, i. 280; outlet of jheels near, 283.

Mulhosi escape, i. 349; description of, ii. 152. Mullikpoor, village of, ii. 530.
Mundowli, bridge at, i. 205.
Munglour, i. 118, 204, 212; choki post established at, 38 ; bridge of cross communication at, 77, 205; expenditure in division of, 78; advanced state of works at, 200; hridge at, superintended by Mr. Read, ii. 255.

Munohurpoor drainage, junction of with Alineer, i. 348.
Munowa, village of, i. 286; bridge at, 293.
Murdoch, Mr., ii. 321, 446.
Murgaon village, course of canal on narrow atrip of land near, i, 256.
Muskurra, i. 111, 126, 163, 165 ; torrent, 56, 109; river, 103, 120, 160; retaining dams od, 103, 162; reduction of, 111; freed from floodwater, 139 ; slope of, 161; elevated position of, ii. 412.
Mussulman population, demand for reservoire among, i. 67.

- labourers, Sunday as a holiday to, i. 89. Mustafabad, i. 333.
Muswanpoor bridge, i. 308 ; end of rajbuha hearls at, 463.
Mutheri. ii. 116.
Muttra, i. 46. 48.
Muzza canal. i. 102; escapes on, ib.
Myapoor, i. 38, 133, 178, 210; dams connected with drainage works at, ii. 4; meana of water reaching dam, ib.; head-quarters station at, 326.
— dem, works of, i. 77; sluices at, ii. 112.
- estate, head worke on, i. 125.
- gate apparatus, occasion for the use of, ij. 110 .
\longrightarrow regulating bridge, i. 70, 77, 137, 187, ii. 105, 109; works between, and Ranipoor torrent, i. 136, 187; floor of, ii. 27; inlets below, 45 ; level of flooring of super-passage, 82 ; action of, for drainage purposes, 96 ; duties of overseer at, 97 ; shutter arrangements at, 109; connecting link between Hurdwar and Kunkhul, ib.; traffe on, during annual fairs, ib.; description of roadway at, 110.
- works, case of, cited, i. 103; detail of construction of, ii. 18; materials used in building, ib.
Myпроогі, i. 35, 229; extension of levels to, 22, 33; curve of canal near town of, 259 ; enlargement of bridge waterway at, 264.

N.

Nanke, town of, i. 118.
Nancon, village of, i. 122, 198, 230; bridge at, 213; branch heads at, 232; headworku of, 234; theoretical discharge at, 240; capacity of channel on reaching, ib, description of country from, to Ganges and Jumna, 248; considered as a position for headwork, 249; situation of, ib.: course of canal from, 251 ; slope of country between Nanoon and rillage of Soonari, 328 ; supply of Etawah line at, lisble to diminution, 376; discharge of branch head at, ii. 542.

- Fork, description of work at, i. 106 ; use of regulating apparatus at, 110 .

Nanoon head, ii. 111 ; establishment at main branch at, $i b$.

- regulators, ii. 108, 109, 133; description of canal alignement from, i. 324.
Napier, Major, brick-kiln used by, iii 4.
Native boatmen, apathy of, ii. 297.
—— water-mill, account of, ii. 373.
- system of under-sinking, reasons for adopting, ii. 470.
Natural cataracts, ii. 164.
$\overline{\text { Na }}$ rivers, beds of, are true escapes, ii. 58.
Navigable canal, modification of channel of, i. 180; defnition of term, ii. 293; detail of lines of, 298 ; reasons why not carried in one consecutive line, 309; recommendations in favour of continuous line, 310 ; position of entrance and exits of, ib.; description of head of, 311.
- channels, use of, ii. 63; general description of, in connection with locks and heads, 293 ; object of, in Khadir, 299; materials of, 300.
- cuts, drainage of space enclosed by, ii. 92.

Navigation, injury of, on Ganges, i. 27; of the Jumna, 43; of Ganges to Futtigurh. 45; insufflcient water for, 48; as affecting Futtigurh branch, 397; cuts for, ii. 67; detail of works for, 293.
Naviglio Grande (Italy), i. 99.
Neemchuks (or curbs) for blocks,' ii. 28; use of, 474.
Newarri bridge, i. 217.
Newmarch, Lieut., i. 79.
Nidhowli, i. 224; bridge at, 221.
Nile, works at Delta of, i. 104.
Ninaoli, village of i. 264.
Nizamut Adawlut, construction of Act vi. of 1819 by, iii. 129.
Noe, M. Carlo, i. 100.
Nogong, i. 160, 163, 165 ; alope of, 161; retaining dams on river, 103 ; Jatonwala drainage turned into river, 111; violence of flood in, ib., 157; redisposition of sand in, 156; position of dem on, 157; retrogression of level on dam, ib,; bed of uniform slope, $i b$. ; change in bed of, 159.

- torrent, i. 56, 109.
worke at, compared with those at Rauipoor, i. 159.
Nowenclature, proposed, of establishment for canal works, ii. 619.
Noneir drainage crosses line of canal, i. 263.
Nooh, jheel and town of, i. 416.
Noon drainnge, rise of, i. 250; south-easterly course of, from Indhunna, 290.
- river, runs parallel to canal. i. 286; intricacy of drainage at head of, 323; head of, 361 ; report on, by Lieut. Johnstone, 363.
Noorpoor bridge, i. 221.
Noorsuggur, town of, i. 112, 202.
North-western provinces, charscter of surface and rivers of, i. 3; reports published by Government of, 13 ; letter addressed to Lieut-Governor of, 31 ; change in government of, 37 ; sickness ariaing from canals in, 54; unhealthy character of canala in, 55, 58; drainage of, impeding irrigation, 60 ; epidemic pervading, ib.; wealthy contractors unk nown in, 67; question of drainage of, 153; difficulties of canal irrigation in, 425; sjatem of village water-courses in, 426.

Northern division (canal works), expenditure on, i. 73, 78; ateady advance of worke in, 95; ndvantage of ataff remaining intact, 97 ; brick-making in, iii. 1 ; cost of materiala in, 21.

- India, adoption of Italian modela for cenal works in, ii. 70.

Novara, i. 103 ; works near, 100.
Nubbipoor, village of, i. 334.
Nugeena, line of canal near town of, i. 11. Nugla fall, i. 165 ; bridge, 217.
Nugureea bridge, 1. 262, ii. 267 ; general deacription of escape at, 140.
Nujufghur jheels, iii. 24.
Nundi's cow (Hindoo sculpture), proposed ornament for Cawnpoor terminus, ii. 403.
Nurrooa, drainege at. i. 288 ; proximity of jheel at, to canal, i. 294.
Nusseerpoor, village of, i. 197, ii. 436 ; irrigation of, i. 200.
Nyashulur, village of, i. 109 ; high land of, 111.

- regulator, low rate of excavation extended to, ii. 582.

0.

Oades, a tribe in North-Western Provinces, ii. 544 ; character of, 545 ; story of a love intrigue among, ib.
Ogee deacent (Ranipoor works), nature of, ii. 68.

Oojeyani village, extensive drainage joining the Seyngoor near, i. 344.
Oomurda, bridge at, i. 292.
Ooreysir cut, i. 260.
Oorya aqueduct line, proposed adoption of, as s source of connected series of rajbuhas, i. 467 ; course of, 468.
Oosneyda, village of, i. 262.
Ootha bridge, i. 293 ; rajbuhe from, 459.
Openings, centre (lutmoo dam), ii. 38 ; description of gate for, $i b$.
__ description of, in embankments opposite Selimpoor inlet. ii. 63; in Khutowli masonry heads, 119.
Ordinary repairs for canal works, eatimated establishment for, ii. 624 .
Oude, dependence on, for masons, i. 92.
Ourun, position of, i. 286, 288.

- drainage, a branch of, crossed by canal, i. 286; different lines of depression in, 289; intersection of, 294.
Outlet, Lounde Leniwala, i. 134.
Overfalls (masonry), substituted for inclined plane, $i .153$; advantages of, $i .154$; вeries attached to sluices of Myapoor dam, ii. 11 ; gradation of, $i b$.
Overseers of regulstors, duties of, $\mathbf{i} .98$.

P.

Pandoo river, i. 34, 122, 276 ; junction of, with Ganges, 35 ; riee of, 81 ; parallel to Eesun, 250; escape of waters from, 277 ; connected with jheels at Simmeria and Nyla, 279 ; main sources of, ib. ; overflow of, ib. ; south-easterly direction of, 305 ; turns to north and joins Ganges, ib. ; tortuous course of, 306 ; height of, above Ganges, ib.; proposed aqueduct across, 462. - nulla, ii. 385.

Pbniput district, supply of, i. 107.
Papers, list of periodical, iji. 122.
Parallelism, unpleasing appearance caused by abaence of, ii. 17.
Parker, J., i. 78, 97, ii. 428.
Parjuli, i. 220, 222.
Passage of falls below Pattri super-pasaage, ii. 309.

Passes into Sewaliks, boulders collected at mouths of, ii. 86.
Pavia canal, i. 99, ii. 303.
Peepul tree in Guaes ghat, i. 125.
Peepulheri bridge, i. 221.
Peeran Kulleeur, i. 119, 146; ridge of, 85, 178, 184 ; regulating bridge, $i b$.; construction of falls on, 120 ; bank of, 147 ; excavation, 183.
ridge, i. 184 ; high land at, ii. 23 ; depth of canal chandel at, 438.
Percolation, section of, from the Sewaliks, i. 42 ; ratio of, on the Ganges, 44 ; evils of, ii. 472.

Perpendicular falls, ii. 166.
Peydhut, village of, 333.
Phoora river, i. 321 ; length of, 349.
Phoura, large size of, used by the Oades, ii. 546.

Piedmont, i. 99; canals in, 102.
Piedmontese canal works adopted as models, ii. 70 .

Piers, description of, at Myapoor dam, ii. 11 ; at Rutmoo dam, 38.
Pilasters over cutivaters, pierced for ventilation, ii. 460.
Piled kilns, return of, iii. 9.
Piles, used for purpose of causing rivers to silt, ii. 56 ; European system of, 470 ; abandonment of, on Soladi aqueduct, 471; expense of, 472 .
Pilgrim brickmaker, iii. 4; mode of brickmaking of, 5 .

- ghat of Hurdwar, i. 122.

Pilgrime, diffculties of, at Pyri ghat, i. 128.
Piling, sheet, used at Rutmoo bridge, ii. 34.
Pilkutra, village of, i. 327.
Pinjore valley, i. 13.
Plains near Hurdwar, ii. 66 ; excavation of Ganges canal in, ib.
Plan of works on Solani valley, ii. 46t.
Plantations bordering canal, i. 246.

- mango graft, ii. 93; situation of, ib. ; means of irrigating, $i b$.
Platform across bed of Rutmoo river, general description of, ii. 37.
Po, at Turin, i. 103.
Poa, village of, i. 278.
Pontoon cylinders, preference of boate to, il. 312.

Pooth bridge, i. 213.
Price, Lieut. G., i. 78, 197, 368, 455.
Priests interested in maintaining water at ghats, i. 124.
Principle of under-sinking recognized, ii. 471.
Projects of 1845, i. 145,192 ; outlines of, 194.

Projections, use of, ii. 37.
Protection of canal bed by bridge flooringe, 214, 216, 224; new species of, on Solsni aqueduct, ii. 508.
Protective embankments (Rutmoo), injury to, by floods, ii. 28.
Provence, description of corn-mills used in, ii. 351.

Public works, employment on, i. 52; sccounts inapplicable to canal works, i. 70.
Puchowur, bridge st, i. 267.
Pukkann bridge, i. 224.
Pulra, depth of canal water at, ii. 313; tail foundation walls at, 317.
_- falls, i. 127, 229, ii. 133; waterway of, i. 191, 241 ; general description of, 192.

Punchukki (native corn-mill), character of, ii. 371 ; defects in, ib.

Punjaub, cuts and dams on rivers of, i. 4.
Purgunnas between Hinde and Gangeg, cultivation in, i. 81.
Purtabpoor, village of, i. 305.

Putahar bridge, i. 275.
Puthans and Moghuls, cuts and dams made by, i. 4.
Putralla, i. 108.

- torrent, masonry works for passage of, i. 109.

Puttiala, position of, i. 399.
Prajah, rights of water claimed by, i. 13.
Puttri, i. 17, 24, 140, 143, 146; forest at, 116 , ii. 437; valley of, i. 116,142, ii. 54 ; works at, i. 116; floodwater in valley of, 145; amount of waterway of torrent, 150; level of torrent bed, $i b . ;$ sand caused in torrent by floods, 164 ; excevatiou back to, 165 ; ouper-passage of torrent over Ganges canal, 173, 178, 183, i. 64; super-pessage of rao. i. 174; falls, 176, 177, 190; watershed of torrent, ii. 65 ; rise of works at, 74 ; country drained by river, 78 ; detail of super-passage, $i b$.; relief of super-passage, 79; boundary of watershed of, ib.; point of intersection of torrent with canal, 80; difference between Puctri and Ranipoor torrents, ib.; nature of spurs in valley of, 81 ; effect of floods on works at, 82 ; materials used in building channel at, 307.
——basin, i. 114, 144, 145 ; drainage of, 114, 143, 154, ii. 79, 80.
—_falls, ii. 165 ; section of canal bed from tail of, 518.

- and Ranipoor rivers, i. 115.

Putwai nulla, i. 220, 401 ; length of, 416 ; Mr. Volk's description of, 417.
Puzawa (native) brick-kilns, ii. 26, iii. 2.
Pgkwarra, Mr. Dodsworth's bench-mark estsblished at, i. 404.
Pyri ghat, i. 128, 129 ; uncertain depth of water of, ib.

Q.

Quadrant wall foundations (Solani aqueduct), design of, ii. 505.
Quarterly system of accounts, i. 74 .

R.

Rafts used on Ganges for navigation, i. 50. Rahin, grent lake at, i. 345.
Railway (Solani aqueduct), slope of, ii. 421 ; earthwork connected with, 425.
Rain, local falle of, at heads of Solani, ii. 464.

Rainfalls, canal supply dependent upon, ii. 113.

Rains, periodical, i. 47, 155, 158, ii. 528, 530; effects of, i. 91.
Rain-water, quantity of, falling upon a given surface, ii. 76.
Raipoor, mountain torrent, i. 109.

- town of, ii, 109.

Rajbuha, irrigation by, i. 343 ; explanation of term, 421 ; commencentent of excesation, 439.

- main western, i. 211; opening of Puttri inlet channel into, ii. 91.
heads, downwards from Bolundshuhur, i. 241 ; sills of, 315 ; reduction of width of, 316; between Gihror bridge and 65 th mile, 337; between Sithmurra and Rawuu bridges, 368 ; for maintaining equilibrium In channel, ii. 113 ; width of, on brauch bridges, 250; liable to silt deposits, 251.

Rajbuhas on Jumna canals, i. 169.
disposition of, ou Bolundshuhur line, i. 418 ; reasons why simplest designs adopted for heads of, 432; rules issued to executive officers in regard to the construction of, 439 ; private property, 449; question of distribution, complex, 470; medium of providing inland villages with hill produce, ii. 295; designed for Ganges canal works, 433; description of, ib.; country with which connected, 430 .
Rajoopoor, i. 230.
Rajpoor canal, i. 12.
Rajpoora nulla, i. 349.
Ramghat, i. 399.
Ramgunga river, i. 5, 44.
Rampoor, village of, i. 6, 20, 211; site of Capt. Debude's canal head, 17; sickness prevalent at, 56 ; works at, 137; soil of canal channel from, 190.
Range, Sewalik, i. 107.
Ranipoor, i. 160, 164, 183; drainage, 34, 144; dam at, i. 153; drainage works, 155 ; rise of works at, ii. 74; water-shed of, 79. - falls, dimensions of, i. 175.

- inlet, ii. 66; description of, ib.
- masonry dam, i. 151.
— rao, i. 154, 160, 165 ; super-passage of, i. 174: levels of bed of, ii. $\mathbf{8 7}$.
river, $114,115,153$; average width of, 141; bed of, ii. 66.
- super-passage, 181, 183, ii. 64, 210 ; description of, ii. 66; superstructure, 68; materials used in, 74; superintendence of, ib.; quantity of material expended on, 75 ; rates at which executed, it.
- torrent, j. 85, 133, 135, 140, 141, 142, 143, 170, 171; works between, and Myapoor regulating bridge, 136 ; first defined line of drainage, 140; amount of waterway, 150 ; bed leval of, ib.; deposit of, 156; escape, ib.; sand from floods in, 164; super-passage over Ganges canal, 173 ; description of super-passage, 17i; watershed of, ii. 65 ; success of Mr. Kay in managing torrent, ii. 78 ; effect of, upon defences, counteracted, it,
- valley, necessity of extending excavation to, i. 165.
- works, proximity to hills of, i. 165; materials used in, 176; purpose of design of, ii. 72; description of soil at, 76; Captain Goodwy a , superintendent of, 78; Mr. Kay builder of, $i b$.
-and Puttri drainage, change in method of dealing with, i. 151.
- and Puttri torrente, i. 86.
- and Rutmoo torrents, country between, i. 146-8.

Rao (provincial name), i. 115; water admitted into canal channel from 153.

- Ranipoor, i. 154, 160, 165.

Raoli village, i. 213; bridge, 221.
Raos, i. 115 ; dangerous velocity of, ib; short duration of, $i b$.
Rates of work at Myapoor, summary of, ii. 20.

Ravi river, i. 4.
Ravines, lining of, ii. 65; impracticable, 112.
Kawun, dry and cultivated country near, i. 37i.

Read, Mr., i. 38, 79, 91, 92, 94, 97, 247, ii. 557; executive offlcer 2nd diviesion, i. 386; survey by, ib.; report of, 387; termination of levels by, on Futtigurh branch canal, 397 ; course of line marked out by, 398; completion of works by, ii. 103; Khutowli eacape completed by, 121 ; adjustment of machinery managed by, ib.

Rear gates, Rutmoo dam, means for raising and holding down of, ii. 39.
Receiving channel, in reference to escapes, ii. 114.

Registers of water gauges, i. 23.
Regulators, apparatus for opening and closing the, ii. 13; size of arches of, 20 ; wings of Rut moo regulator, 48; action of, 95; works for the supply of water, and slope of channel, ih. ; action of Myapoor and Dhunowri regulators for drainage purposes, 96 ; machinery for opening and closing, $i b$; on main canal at Futtigurlh, 101; uses made of each, 107; use of apparatus for, 110 ; dificulties of regulating water supply, 494.
Regulation VII. of 1819, sections of, iii. 128.
Relı efflorescence, remarkably observable, i. 266; fatal to the manufacture of bricks, ib.
Remarks, prefatory, i. 107.
Reports of canal saoatory committee, i. 60; principal conclusions in, $i b$.; of 1845, i. 132; of Major Buker, concluding remarks in, iii. 5; of sanatory committee on Ganges canal works, 24.
Reservoirs, proposed system of, i. 34; nuisance of, ii. 316.
Residence for executive chiefs or superintendents of districts, ii. 620 .
Retention of water on high levels, ii. 46; of bed levels by bridge floorings, 214, 216, 224.
Revenue, sacrifice of, i. 18, 59.
Ruvetinents, laying of, at Myapoor, ii. 7; connecting right flank of dam with regulating bridge, 12; elevation of fukeer's revetments, 17; drainage works appended to, 20 ; connection of, with springs, 28 ; protection of, ib.; relief of, 30 ; relief of right revetment, $i b$.; leading revetment, 31 ; parallel revetments, $i b$.; lines of, $i b$; lower revetment, ib.; walls of, 33; left revetment, ib.; height of, ib.; foundations of, 34 ; curved lines of, position in which built, ib.; opposition of right revelment to spring current, ib. ; relief of left revetment from spring current, $i b$; wall of, 35; protective arrangements for covering, 41 ; proportions of materials in, 457; description of, $i b$.
Rewa falls, ii. 161.
Rhine, volume of water of, ii. 465.
Rhutgaon nulla, crossed by Etawah terminal, i. 370; liead of, ib.

Rice cultivation, ii. 23; sickness in neiglbourhood of, 54.
Rings, countersinking of, 33.
Right parapets (lanipoor super-paseage), ii. 69.

Rinde, aections between Rinde and Jumna, i. 80; purgunnas between Rinde and Ganges, 81; rise of, ib.; course of, ib.; canal to right of river, 84 ; lands to left and right of, 195; southerly bearing of, 250 ; tortuosities of course of, 255; hollows in contact with Ganges canal, ib.; cut for draining Jinwar jheel into, ib.; level of, 256; contact of canal with, 259; passage of, 260 ; canal in close proximity to, 268 ; difference between bed of, and that of Eesun, 271; deacription of country, ib.; nuw bearing of, 272; tendency of Jrainage to, 278; width of country between Rinde and Seyngoor 328 ; runs between Etawah and Cawnpoor terminal lines, 333; natural watershed of, ib; ; levels of, 334; approach of, to the Segngoor, 342; advantages of irrigation to land bordering, 362.
River-stone, used for filling in space between piling and masonry, Rutnoo, ii. 34.

Road between Mynpoori and Agra, ii. 245; of cornmunication, 513.
Roadway, maintenance of canal, i. 244, ii 111; description of, ii. 8; width of, 13, 47, 101: depression of, 18; height of, 33 ; disposial of drainage of, 94 ; principles upon which executed, 216.
Robertsod, Mr. T. C., remarks of, on canal works, i. 25; exertions of, 29.
Rods, iron, used in Rutmoo works, ii. 33.
Rohilkund, cuts and dams on rivers of, i. 4; specinuens of canals in, $i b$; first district for irrigation, 11 ; Turai, 41; watercourses in, 107; forests in, ii. 472.
Roodurpoor, village of, i. 326.
Roopbas, quarries near, ii. 379.
Roopur, plains of, i. 14.
Roora, description of escape at, ii. 154.
Roorkee, cost of canal from to Cawapoor, i. 28 ; cost of canal to, ib; choki post established at, 38; visited by Governor-General, 40; executives recommended for works south of, 68; excaration suath of, 82; detached situation of, 92 ; civil engineers' college, plans of works on the Stura river given to, 100, ii. 334 ; high land of, i. 116 , ii. 58 ; line of cadal bearing on, i. 121; country from, to Nanoon, 191; description of canal from, 202; bangur land of, ib.; minimum section of channel to Futtigurl branch, 235; capacity of channel to Futtigurh branch, ib.; estimated maximum discharge at, 236 ; works conflined to country lying above, ii. 3 ; angle formed by transition of alignement from Puttri to, 32; mortar from, 213; town of, 326; establishment of works at, 338 ; irrigation of gardens and land in neighbourhood of, 438; station of, 534; first Linglish kiln, tried at, iii. 4; brick kilns built at, ib.; establishment of Hindustani kilns at, 5; "new systen," sketch of, 7; description of flame kiln, ib.; success of flame kiln, 9; memorandum on system of account-keeping introduced into workghops, 218.

- bridge, i. 200. near, i. 255; bridge, 267.
Rope, substitution of, for clain, ii. 57.
Rosetta, i. 104.
Rouns, direction of drainage from fort of, i. 285; artificial cut near, ib.; mound and fort of, ib.
Rousa, village of, i. 268; key to passage of Doab, 276.
Route, direct, for canal, objections to, i. 119. Rowayn nulla, i. 347.
Rubble work, where used, ii. 29; guards of, 119.
Rudain, village drainage at, i. 257; bridge at, 258.

Rules of canal sanatory committee, i. 63; for beldars, ii. 98 ; for overseers of regulatora, $i b$; for guidance in designing works, 113. Rundole, raised clannel of, i. 243.
Runjeetpoor bridge, i. 308, 316.
Russuolalad, i. 279.
Russooiabad, i. $\begin{aligned} & \text { Rements (Solani aqueduct), ii. }\end{aligned}$ 460.

Rutmoo river, passage of cansl by, i. 119; aqueduct over, 120 ; passed by dam system, ib.; areep of canal channel on, 146; torrents tributary to, ill.; catchment basin of, ib, ; flooring of, 147; worke proposed for, 148; canal delivered on, 176 ; low land of, 184; inlet for, ii. 4; works at, ib; skeleton section of works connected with, 20; a perennial streami, 21 ; section of charinel of, 22; tortuous nulla at, ib.; site of works at, 23 ; change in course of, ib.; lining
out of, ib.; natural declivity of, 26; use of $i b$.; upper side of, relieved from inundation, 28; how crossed, 29 ; bed of, 35 ; escape of drain into, $i b$; inlet across channel, ib., 41 ; works on, 44; platform across bed of, 37; detail of works 0n, 51,52 ; course of, before rains of 1852,53 ; floods in, 96 ; old bed of 1852,54 ; new bed of, $1852, i b$.; bed of 1853 , ib.; dam across, 431.
Rutmoo dam, approach of, i. 178 ; maximum height of water at, ii. 23; area of surface inundated at, ib.; system of drainage attached to revetments of, 36 ; inlet parallel to, 41; platform opposite to, ib.; turning hill supply of water towards, 79.

- drainage of country on right bank of canal at, i. 28.
——inlet, description of, 43.
—regulating bridge, i, 143; connection of, with dam nnd inlet, ii. 46; waterway of, 47; description of works at, ib.
- revetments, modified form of underdrainage, ii. 36 ; little trouble and expense of, $i b$.
-- stream, drain-heads for admission of, ii. 48; expected effect of, $i b$.; connection of, with arched passages, $i b$.
- torrent, level of, i. 146; level of bed of, 150; amount of waterway of, ib.; dam and inlet across the, ii. 20 ; works connected with, 431 ; inundations on up-stream side of, 21.
-_valley, excavation from low levels in, i. 165; spring-water near surface of, 438; width of, at the point where the dam is built, ii. 22 ; position of works at, 23 ; relie؟ of, 30.
- works, ii. 24 ; boring operations nt, ib.; result of, $i b$. ; position of, ib.; difficulties attending completion of, 25 ; final success of, ib.; details concerning, ib.; when commenced, ib.; under whose management, $i b$.; lining out of, 26 ; mountain torrents connected with, 40; ground of, 50 ; laying out of, ih.; liberty given to Mr. Jogin with regard to, ih. ; superintendence of, by Mr. Login, il.; excavators placed on, ib.; materials of which built, 51 ; material for protecting, ib.
- and Solani rivers, valley between, i. 116.

Ruttunpoor, village of, i. 278.
Rutwahoo, i. 358.

S.

Sainthra, soil in neighbourhood of, i. 257.
Salarite of canal officers, i. 69.
Salto di gatto (cat's lenp), i. 103.
Sanatory committee, report on Ganges canal works by, iii. 24 ; proceedings of, ib; questions proposed to, 25 ; answers of, $i b$.; appendix to report of, 29 ; data for report of, 48 ; sbstract of facts recorded in report of, 50 .
Sand, sheets of, on the Puttri proper, i. 144; enormous accumulation of, 153, 164 ; course and effects of deposits of, 165 ; undulating ridges of, 203; diagram showing first and eecond deposits of, ii. 57; proccedings of Mr. Login in consequence of audden deposit of, ib.; disgorgement of, 80.
Sandhills, remarkable, i. Il3.
Sandstone, whence procured, ii. 19.
Sandy torrente, effects upon beds of, by interposition of bars of masonry, ii 32 .
Sentah Shali, i. 117.

Sasni, i. 228.
Saul (Shnrea robilsta), ij. 16.
Sawunt Khera, village of, i. 251, 255.
Saynibas, village of, i. 145.
Scoops (or dhalls), used in laying in walls, ii. 84. scour of drailes, ii. 50.
Screw piles, design of using, ii. 56.
Season unfavourable to progress of works,
i. 92 ; results and cost of operations in Second division canal works, expenditure on, i. 73; proposed establishment for, ii. 600. 1847-8, iii. 9.
Sections of Ganges canal, i. 122; of canal from Nanoon to Ganges and Jumna, 248; of revetments, ii. 435; of canal bed, 518 ; of canal at Toghulpoor, 560; canal at Moradnuggur, ib.
Seela nulla, i. 202, 203, iii. 3, 9.
Selimpoor, town of, i, 143; quality of bricke procured from manufactories at, ii. 74.

- basin, description of, ii. 80.
——drainage, escape for, i. 145.
- inlet, i. 177, 179, 183, ii. 82 ; width of waterway of, i. 178, ii. 60 ; cost of masonry, ii. 61; gap through embankments opposite, 63.

Serio river at Albino, i. 103.
Settlement, anticipated, on Solani aqueduct, ii. 454.

Sewaliks, mountains, i. 12, 17, 44, 56, 98, 107, $112,113,115,117,123$, ii. 79,109 ; peculiar feature of country at foot of, i. 41 ; cause of, ib. springs in, ib.; discharge of Jumna at, 42; sketch of country near, 107 ; low spur of hills thrown out from, 133; staple timber in forests of, ii. 16 ; passes in, 51 ; water falling at foot of, 59 ; valleys and ravines in, 65 ; watershed of, 78 ; drainage of, 80 ; passes, 86.
Sewal Khas, village or, i. 213; curve commencing at, 217.
Seyngoor, i. 122, 228, 230, 232; ii. 148; rise of, $\mathrm{i}, 81$; want of cultivation near heads of, 232; heads of, 330; course of drainage of, 333 ; description of outlet into, at Gihror station, 336; cross section taken on escape channel to, $\mathbf{3 5 0}$.
Shahdurra, i. 222.
Shahjuhanpoor, i. 112; pass, 113.
Shalı Munsoor, i. 114.
Shamli, sickness prevalent at, i. 56.
Sharpe, Lieutenant F ., acting assistant executive engineer, letter of, to Lieutenant \mathbf{E}. Fraser, i. 212.
Sheet-iron chanocls, use of, i. 242.
Sheka, bridge at, i. 234.
Shekoabad branch of cenal, cost of, i. 28.
Shewli, town of, i. 462.
Shutters used on Myapoor dam, description of, ii. 16; wood used in, il.
Sickness, causes of, i. 53; in North-Western Provinces, 54 ; near Eastern Jumna canal, 56 ; inquiries respecting sickness caused by canals, 57.
Side channcls troublesome and inconvenient, ii. 94.

Sikh States (ceded), natural channels in, i. 12 .
chiers, independent, i. 14.
invasion, canal interrupted by, i. 39.
war, sceond, i. 89.
Sikundra, i. 222.
Ran, town of, i. 248; series of jheels near, ib.; shallow depressions near, 254; bridge at, 258.
Sikundrabad, i. 217, 218, 220.
Sille, height of, i. 145,315 ; advantages of raising, on dams, ii. 45; description of, on Rutmoo inlet, $i b$.

Silt, works for riddance of, i. 99 ; deposit of, 126, ii. 46; projected into canal channel, i. 152; remedy for, 164; clearance of, 169, ii. 35; disgorgements of, i. 172, ii. 80; facts established respecting, i. 172; interference with rajbuha heads, ii. 251.
Simra, depth of canal water at, ii. 313.
_falls, i. 232, 234, i. 133, 165, 193; foundation of, ii. 193; material used in, 194; cost of, ib.; under whom built, ib.
Sind thame kiln, i. 90 , iii. $5,9$.
Singpour, bridge at, i. 267.
Sirdhunna, i. 38, 210, 239 ; bridge at, 213, ii. 240 ; width of country at, i. 214.

Sirsa river rejoins Seyngoor, i. 344 .
Sites of bridges for high military roads, ii. 224. Sithmurra, works at, i. 381.

- drainage, proposed cut into -Delgaon nulla, i. 359 ; description of, 360.
- nulla, in contact with Etawah terminal i. 358; course of, 359.

Sketch of Ganges canal head above Hurdwar, i. 76 .

Sleeper planks used in Rutmoo works, ii. 38. Slits in revetment wall (Rutmoo works), ii. 35. Slopes, i. 111, $113,133,139,142,145,147,184$, 215, 223, 230, 292, ii. 95, 117 ; remarkable, of mountain torrents, $i .140$; results of distribution on Eastern Jumna, 166; table of, 187, 188 ; difficulties attending, and protecting expedients, i. 199; from Roorkee to Belra, 203; from Jullalabad to Sikundrabad, 218; from Nanoon to Sawunt Khera, 256; danger of silt from sudden reduction of, 257 ; sudden change of, 337 ; of country between Noon and Seyngoor rivers, 369 ; statement of, on Holundsliuliur and Koel branch, 414; latitudinal, menns of relieving one river at the expense of another, ii. 79 ; retention of, by bridge floorings, ii. 216, 224 ; of Solani aqueduct on tops of embankments, 519; of bed dependent on freedom of water from vegetation, 540.
Sluice-gate, deptlı of, on Myapoor dam, ii. 11.
Sluices, i. 102, ii. 5, 11, 29, 38, 91, 303; on the Nogong dam, i. 157; description of, on Rutmoo dam, ii. 38; conmunication formed across openings in, 43; advantages of double plan of, 91.
Smith, Captain B., deputed to Lombardy and Venice, i. 100, 4.31; observations of, on canals in Lombardy, 101.

- Colonel E, ii. 161.
- Colonel R., i. 110.

Sobhunpoor, village of, $\mathrm{i}, 270$.
Sogaon, bridge at, i. 275.
Soil, descriptions of, i, $87,140,266,274,292$ 331, 307, ii. 85, 219.
Soj, rise of the Phoora near, i. 343.
Solani river, i. 21 ; crossing by aqueduct, i. 21, 120 , ii. 462 ; heads of, i. 22; free passage of canal over, 119; topographical charncter of, ii. 411; floods of, 414 ; course of, ib; surface level of country crossed by, 416; general detail of, 461-468; head of, 464; drainage supplying the, it.; difflculties in laying foundation in, 470; depth to which irons were carried in boring bed of, 472 ; plan of bed of, $473,522,523$; blocks resting upon sand in bed of, 473 ; description of works on, 481,488 ; nccount of bunds and embankments on, 522 ; bed of, $i i . ;$ turning of, from old course, 527 ; true slope of, 531 ; passing off the floods of, 534. - aqueduct, i, 31, 65, 70, 183, 200, ji. 98, $411,459,495,518$; obstacles to the construction of, i. 31 ; rapid completion of, 66 ; calculations on, ib. ; great quantity of material required for, 67 ; appointment
of special offlcer for, 68 ; soil of, 90 ; commencement of works, 185 ; effects of canal upon, 191; drains attached to works on, ii. 92; modification of supply passing over, 112; foundations of, 420; superintendence, ib.; quantity of water required to be got rid of, 492 ; description of termini on, 433 ; ghats, ib.; commencement of earthen aqueduct, 434 ; design of revetments, 435 ; progress of construction, 437; methods of working, 440 ; description of waggon used on 441; averages of work done. 444 ; description of locomotive used on, 447; downatream extremity of, 438; interesting items in history of, 439; methods of working on, 440; sectional form of, 453; leying down the stone of, 454; masonry works attached to earthen portion of, 455; bridges, cattle ghats, revetments. \&c., 456; outer surface of, 458 ; detail of foundations of, 469 ; planning of, 470 ; protective curtains of, 474 ; sinking of blocks, 481 ; examination of buper-structure at, 482; tables showing amount of waterdischarged through earthen or revetted channel, und through masonry channel, 522,523 ; bearing of, across valley, 523; table showing how discharge is met by water-ways, 535 ; retaining back-water upon, 536 ; lower bays of, 536.
Solani torrent, i. 85 ; works connected with, ii. 431.

- valley, i. 35, 118, 119, 121, 187; works on, 86; masonry aqueduct, ib.; communication over, 119; ligh land bordering the, ii. 415 .
and Bhat nuddies, i. 44.
and Rutmoo rivers, i. 115 ; valley between, 116.
Sombe, i. 108; s torrent of large dimensions, ib.
- torrent, masonry works for passage of, i. 109.
- river, i. 120.

Somna, i. 228.
Sookhi bridge, i. 293.
Sooki, village and fort of, i. 283; hollow near, ib.; zumendars' cuts to east and west of fort, 284.
Sookurtal, i. 45, 48, 50; navigation from hills to, 50. - ghat, ii. 101.

Soonari, width of country at, i. 332 ; execution of works from, 340.
Sooreya, a bridge at, i. 275.
Soorkee, issues of, iii. 21.
Span, Lieut, i. 98 ; attached as assistant on Etawah branch line, i. 383.
Spandrils and flooring of Solani aqueduct, completion of, ii. 512.
Springs in Puttri and Rutmoo valleys, i. 150.

Spring-water, under sandy aurface, i. 115 ; in vicinity of hills, 116; difficulties arising from, 116, 177; depth of, at 110th mile, 220 ; means of reducing level of, ii. 26 ; reduction of level of, 31, 42, 84 ; (Rutmoo) slits for percolation of, 36 ; depth of, at Moongawalla well, 76.
Spurs, transverse syatem of, at Ratmoo works, ii. 23; application of, 53; failure of, 55 ; deaign of, 69; similarity of, to those of Northern Italy, ib.; efflcient nature of, ib.
Staff, 2nd department, i. 79 ; on canal worka in 1848, 78; 6 th division canal works, 80.
Station posta (chokjes), description of, ii. 280.
Stationery, indent for, iii. 126.
Stations, military, stoppage of drainage round, i. 60.

Steam furnaces, absence of coke a loss to, ii. 449.

Steps, flights of, at Rutmoo bridge, ii. 34 ; at Solani aqueduct wings, 469.
Stop-cocks, exaggerated, ii. 303.
Store-rooms, Myapoor dam, i. 12.
Strachey, Lieut. R., i. 32, 38, ii. 7 : cut made by, 459 ; resulte of brickmaking by, iii. 2 ; assumes executive control of works, ib.; called away to field service, ib.; arrangement for contract bricks, 3.
Stratum, table showing depths of, at Ranipoor works, ii. 75.
Stuart, Col., reference to letter of, i. 30.
Stura, river, bridge over, i. 99 ; character of, 100.

Subhud, village of, i. 250.
Subterranean channels, ii, 30.
Suchindi, town of, i. 462.
Suharuopoor, town of, i. 20, 42, 185, 230 ; height of, above the sea, 21 ; sickness prevalent at, 56 ; irrigation of 107; high road from Meerut to. 212, 416; damage to, by opening of canal, 422.
district of, i. 12, 35, 79, 201.
Suhenda bridge, i. 229, 239.
Suhpoo, proposed escape near town of, i. 417.
Sukrouds forest, i. 146; town of, ii. 416.
Sulawar, i. 216, 221; reduction of falls from, 239.

- bridge, ii. 121, salient end of embankments opposed to Ranipoor current, ii. 70.
- falls, ii. 165, 184; description of, ib.

Sultanpoor, junction of Muskurra and Nogong torrents, near, i. 57.
Sunowta bridge, i. 224.
Sunsadharra canals, i. 12.
Sunsurra pass, drainage of, ii. 464.
Superintendent of northern division, proposed head-quarters of, ii. 596.
Super-passage, general description of, on Ranipoor and Puttri torrents, ii. 64; works connected with, 66 ; flooring of, 69, 72; defences connected with, 72; table showing value of channel to meet discharge, 76.
(Puttri), description of, ii. 78; at Puttri torrent, 80 ; removal of water from excavations, 84 ; establishment for supervision of, 88.
Superstructure of Solani aqueduct, ii. 460, 486; revision of details of, 482.
Supply of water, detail of regulating works for, ii. 75; amount of, for Bolundshuhur branch, 103; dependent upon local rainfalls, 113

- channel from Rutmoo river to Assoffnuggur Falls, ii. 548, 554; from the Ganges to Myapoor, 548, 549 ; from Myapoor to Puttri super-passage, 548, 550 ; from Puttri super-passage to Rutmoo river, 548, 551.

Supreme government, changes in, i. 29; doubts of, ib.; decigion of, 33; letter of, 30; despatch of, 63.
Surai, village of, i. 141, 142, 144; bridge et, 209; works constructed from, 212.
Surface, reduction of level of, i. 48; maximum difference of, between Rinde and Jumna, 330.
ii drainage, when intersected by canal, i. 58.

Surrowli, village of, i. 108.
Surveys, embryo state of, i. 80; Futtigorh branch, 94 ; of Gangen canal, made by Captain Cautley, 149; in Meerut and Bolundshuhur districts, ii. 323.
Sutheri, i. 213; bridge of, 212.
Suthnee, village of, i. 259.
Sutlej, river, i. 4, 12, 13, 14, 544; ita epproach
to Roopur, 14; canal, 15 ; dependence on country north of, i. 92 ; close of campaign, iii. 3.

Suttarpoor bridge, i. 259.
Swaballi village, tract of country round, i.
324 ; drainage assigned to the Rinde, 324.
Syari nulla, nqueduct over, i. 278.
Synibas, i. 150, 185.

- and Gurh, bridge between, i. 150.

T.

Table: Canal discharges, i. 149. escape and inlet to canal channel from
Myapoor regulator to Rutmoo dam, i. 179.

- details of slopes, i. 188, 189.
- relative position of Rinde and Eesun, i. 264.
- relative levels of the Rinde and Pandoo, i. 278.
- capacities of different canal channels, i. 310.
- list of bridges proposed in estimate of 1850 compared with those actually built by Lieut. Hodgson, i. 314.
relative position of beds of Rinde and Seyngoor, i. 328.
-- levela on Litawah line, i. 335.
- depressions between Jumna and Ganges, i. 338 .
- results of Mr. Dodeworth's cross sections, i. 339.
- relative position of beds of rivers on

Etawah terminal, i. 351; detail of levels, i. 368 .
relative position of beds of rivera on Etawah terminal, i. 373.
-_ values of discharges, i. 377.

- position of masonry falls on Futtigurh branch, i. 388.
- discharges on Futtigurh branch, i. 391. width of waterways on Futtigurh branch, i. 392.
surface levels of Futtigurh branch, i 396.
- slope on Bolundshuhur branch, i. 405.
- - slopes on Koel branch, i. 407.
- dimensions of the Bolundshuhur branch canal, i. 409.
-- falls on Bolundshuhur and Koel branch, i. 413.
- average depth of excavation on Etawah terminal line from 65th to 120th mile, i. 352.
i. 352 capacity of excavated channel on Futtigurh brancl, i. 389.
- relative situations and amount of drop of

Assoffnuggur, Muhmoodpoor. Belra, Jaoli, Chitowra, Sulawar. Bhola, Dasna, Pulra, and Simra falla, ii. 309.

- height of revetment and gate in upper and lower chambers in canal channela, ii. 313.
- cubic content and cost of masonry and atucco of locks at Bnhadoorabad. Asaoffnuggur, Muhmoodpoor, Belra, Jaoli, Chitowra, Sulawur, Bhola, Dama, Pulra, and Simra, ii. 320.
-monthly establishment (Roorkee workshops), ii. 353.
- dimensions of bridges and baye on terminal lines, ii. 396.
-average of labour for digging and carrying earth in waggons pushed by men, ii. 442, 444.

Table: average of labour required for digging and carrying earth in waggons drawn by horses, ii. 442, 444.

- work done by locomotive, ii. 448.
rates of earthwork as executed on the Solani earthen aqueduct in ballast waggons propelled by men, ii. 451, 452.
__rates of earthwork as executed on the Solani earthen aqueduct in ballast waggons drawn by horses, ii. 451, 452.
—_size, rate of sinking per day, and depth, of blocks used in Solani aqueduct, ii. 480.
—dates on which arches on Solani were commenced and completed, ii. 500.
— mean depressions of arches on removal of centerings, ii. 502.
- deviations from perpendicular in piers examined with plumb-line, ii. 510.
- establishment for aqueduct, ii. 517.
_-amount of water discharged through earthen aqueduct channel, ii. 521.
——velocity of discharge, ii. 535.
- expenditure on kutcha bricks, iii. 8.
— expt and number of bricks turned out by Hall's machine and workpeople employed thereon, iii. 11.
—h statement or abstract of cash received to account of materials, and of issues of materials, to works, iii. 23.
- comparative salubrity of diflerent military stations in North-Western Provinces, from 1825 to 1844 , iii. 33.
- abstract of medical examination of twenty-six irrigating villages near the Hansi branch of the eastern Jumna canal, iii. 34.
_abstract of medical examinations of five irrigating villages situated half a mile or more from the Hansi branch of the Western Jumna canal, iii. 35.
- abstract of medical examination of twenty-six villages near Nujufgurh jheels, in the khadir lands of rivers, iii. 36.
_ abstract of medical examinations of twenty-two villages near the Delhi branch of the canals west of Jumna, i. 37.
—abstract of medical examination of twenty-eight irrigating villages near Delhi branch of canals west of Jumna, iii. 38.
——abstract of medical examination of nine irrigating villages near Rohtuk branch of canals, west of Jumna, iii. 39.
- abstract of medical examination of six irrigating villages near Rohtuk branch of of Western Jumna canals, iii. 39.
- abstract of medical examination of twenty-four unirrigated villages in Delhi territory, iii. 40.
- abstract of medical examination of twenty-one towns and villages in protected Sikh states, of which twelve connected, and oine unconnected, with Delhi canal, iii. 41 .
—abstract of medical examination of thirty-four villages, \&ce., practising wellirrigation in Northern Doab, iii. 42.
— abstract of medical exemination of twenty unirrigated villnges, of which five are in North-western khadir of Ganges, and sixteen on high land of the Doab, jii. 43.
abstract of medical examination of nineteen irrigating villages situated near Subarumpoor, or Eastern Jumna canal, in southern division, iii. 44.
- abstract of medical examination of twelve irrigating villages more than half a mile distant from Subiarunpoor, or Eastern Jumna canal, in southern division, iii. 45.
-- abstract of medical examination of eighteen villages irrigating from the Suha-
runpoor or Eestern Jumna canal, in the centre division, of which nine are within half a mile of caual, and nine at a greater distance, iii. 46.
Table: abstract of medical examination of fifteen villages, under various circumstances, in northern division of the Suharunpoor, or Eastern Jumna canal, iii. 47.
_- summary or general abstract of medical examinations, iii. 48.
- comparative abstract, showing the ratio of population to area in certain irrigated and unirrigated villages of North-Western Provinces, iii. 49.
-abstract of medical examinations referred
to in Dr. Kier's report, iii. 54.
- abstract of medical examination referred to in Assistant-Surgeon Collyer's report, iii. 55.
- expenditure on Doab canal, in account current with direct canal revenue derived thereupon, iii. 56.
--expenditure on canals west of the Jumna, in account current with direct canal revenue derived thereupon, iii. 56.
- daily particular cash account of the northeru division of Ganges canal, iii. 61. — overseer's monthly account, iii. 63.
-_ expenditure on certain works of Ganges canal during February, 1853, iii. 64.
division of accounts on Ganges canal, iii. 65.
- pay bill of establishments attached to northern division of Ganges canal for February, 1853, iii. 66.
- overseer's account for March, 1853, iii. 67.
- expenditure on certain works of Ganges canal for March, 1853, iii. 68.
- pay bill of establishment attached to northern division for Marcl. 1853, iii. 70.
- daily expenditure on works of northern division for April, 1853, iii. 70.
- daily expenditure on certain works of northern division Ganges canal for April, 1853, iii. 72.
- pay bill of establishment of northern division Ganges canal works for April, 1853, iii. 74.
deputy superintendent's account current for April, 1853, iii. 75.
- overseer's account current for February, 1853, iii. 76.
- overseer's account current for March, 1853, iii. 77.
deputy superintendent's account current for April, 18.53 , iii. 78.
offlce abstract of overseer's account for February, 1853, iii. 79.
- offlee abstract of overseer's account for March, 1853, iii. 80.
- offlce abstract of deputy superintendent for April, 1853, iii. 81.
- northern division Ganges canal, account current for February, 1853, iii. 82.
- northern division Ganges canal, account current for March, 1853, iii. 83.
- northern division Ganges canal, account current for April, 1853, iii. 84.

Sayer account current northern division Ganges canal, for the half-year ending April 30, 1853, iii. 85.

- original works account book (Solani enrthen aqueduct), iii. 87.
store eccount books, iii. 90, 91.
miscellancous account booke, iii. 92.
expenditure for northern division Ganges
canal, for quarter ending April 30, 1853,
iii. 98 .

Table: clieck books, iii. 94.

- amount and quantity of work ezecuted on the Solani earthen aqueduct to April 30, 1853, iii. 102.
—_salaries of executive staff, iii. 111.
- daily account of workpeople and materials, iii. 121.
_- progress of works on Ganges canal, iii. 123.
-_ abstract of dischargen, iii. 143.
—— capacities of canal sections, iii. 144.
- surface and bottom velocities, iii. 145.
—— capabilities of Solani aqueduct, iii. 146.
- superficial area which canal on No. 1
project will occupy, iii. 147.
- values of discharge on project No, 3, jii. 150.
- report of the water in the Hindun river from Ghazioodeennugger bridge to village of Mozabad, as taken in April, 1840, iii. 152.
- comparative statement of details regarding construction of arches, iii, 158.
- statistics, iii. 190.
- valuation statements of property at Cawnpoor falling within canal boundaries, iii. 243.
_ progress made monthly in sinking each foundation block of Solani aqueduct proper, from A pril 1, 1858, to July 31, 1850, iii. 277. - cost of undersinking foundation blocks of Solani aqueduct, from April 1, 1848, to November 1, 1850, iii. 286.
- depressions of Solani aqueduct arches on removing centerings, iii. 288.
-abstract estimate of works on Ganges canal, iii. 292.
Table-land, elevated, large tracts of, washed away by floods, ii. 467.
Tail foundations, depth to which sunk on Puttri super-passage, ii. 82, 84.
Tanks, multiplicity of, in India, i. 51 ; formation of series of, on canal line, 231.
Tar palm-tree, i. 230.
Temple on Chandni Puhar, i. 123.
Terminal lines, rajbuhas on, i. 456 ; method of regulating admission of water into, ii. 107; heads of, 106, 110.
—— works, reasons for postponement of, i. 380 ; general detail of, ii. 383; detail of, on Etawah line, 406; naterials used on Solani aqueduct, 457.
Termini of branches, detail of, ii. 409; of the Solani aqueduct, 433.
Terraces, pukka, iii. 8 .
Test of malarious influences, iii. 25.
Thannabhown, town of, i. 8 .
Third division, canal works, proposed establishment for, ii. 602.
Thomeson, Mr., i. 37.
Thornton, J., Esq., letter to H. M. Elliot, Esq., iii. 125.

Ticino, i. 99, 100.
Tigers, harbour for, i. 148.
Tigris, i. 288.
Tihara canal, i. 13 ; village of, ib.
Timber trade in valley of Deyra, $\mathbf{j}, 50$.
——apron, ad vantages of use of, i . s04, 305.

- centerings, object in using, ii. 500.
- yard (Roorkee), Lieutenant A. Allen appointed engineer of, ii. 328.
Timli paes, ii. 109.
Tireen, object of selecting as site of escape, i. 272; bridge at, 275.
- escape, description of, ii. 142, 143.

Tiroon, town of, i. 280.
Toghulpoor, i. 77, 202, 203, 204 ; bridge of cross-communication at, 77.
Tor irrigation on Bolundahuhar and Koel branches, i. 403.
Torrent, action of, i. 161, ii. 72; flowing over
sandy bed, $i b$; works for relieving channel from, ii. 37; works for maintenance of, in direct course, 54 ; super-passage for carrying over canal at Ranipoor and Puttri, 66, 78.
Torrents, influx of silt from, i. 164; mutability of courses of, ii. 22; means of passing off, at Rutmoo, 23; difficulties of disposing of, 455.
Torrino (rao), i. 115.
Towers on Myapoor revetment, ii. 8.
Towing-paths, i. 193.
Traffic on Ganges during dry months, i. 56.
Tribes occupied in digging tanks and watercourses, i. 67.
Trieste, i. 102.
Tugaeen bridge, main line of rajbuha at, i. 367; village of, ii. 154.
Tuktowli bridge, i. 308.
Tunnelling, system of, i. 148.
Tuppul, i. 220; branch of canal to, 28, 84; character of branch to, 84 .
Turai, unhealthy tract called, i. 41.
Turbines, ii. 371.
Tureend, fort of, i. 280; jheel at, 281.
Turin, i. 99, 103.
Turnbull, Lieut., i. 29, 38.

- Capt., i. 247, 326, 557.

Tutteea, town of, i. 280.

U.

Uchuhja bridge, i. 225; works constructed from, 229.
Ukburpoor, town of, i. 321.
Umballa, iii. 4.
Umburpoor, ii. 116.
Umurpoor, village near Koel, i. 322.
Under-drainage across canal line, ii. 26; benefts derived from, 30; how effected, 36.
Under-drains, Rutmoo, ii. 49 ; description of, ib.
Under-sinking, ii. 32; practical method of, 469, 474; beneits of. 471; perfection of, 475.
Untwarra, village of, i. 20, 207.
Upper India, famine in, i. 18; exertions of European residents, ib.
Upper Italy, canals in, i. 424.
Urrowli, i. 224, 225.
Uturne bridge, i. 212, 213, ii. 121.

V.

Valley, Gangetic, i. 45 ; of the Ranipoor, ii. 70.

Ventilation, lateral, ii. 35.
View of Bytuk road, near Myapoor, i. 383.
Vindlyya range, ii. 161.
Volk, Mr. P., i. 79, 98. 247; cross sections taken by, between Bolundshuhur and Alligurh, 401; works at Bolundshuhur begun and completed under supervision of, ii. 104; Koel branch head works begun and completed by, 106; Nanoon regulators under supervision of, 108.

W.

Waggons, use of, ii. 428, 616.
Waller, Capt., i. 90 ; visited Roorkee, iii. 9.
War, consequences of on canal works, i. 39.
Water between Rinde and Ganges, i. 81.

- between Rinde and Jumna, ib. artificial supply of, i. 182, ii. 10.
-relief of canal works from superfluous, ii. 92.
- for irrigation, embankments for supply of, i. 8 .
- carriage on Jumna, i. 47.

Water-gauges, establishment of, i. 23, ii. 113.
Watershed of Jumna and Ganges rivera, i. 113; labyrinth of, 248 ; difficulty of discovering, 284 ; of 'Ranipoor basin, ii. 78 .
Waterway, descriptions of, i. 145, 150, 239, ii. $4,6,15,18,38,53,61,62,67,68,115,242$, 251, 467, 485.
Weale's quarterly papers on civil engineering, iii. 4.

Wells, multiplicity of, i. 51 ; depths of, 216, 225, 258, 274, 292, 307, 331, 340 ; filling, ii. 32.

Well-sinkers, professed, not used on Solani works, ii. 474.
Well-sinking, tools used in (jhans), ii. 33.
West Kalli nuddi, i. 112, 113, 206, 211, ii. 115; cut made from, i. 6 ; character of river, 7 ; embankment thrown across, ib.; parallel to Kirsunni or Kristna river, $8_{\text {; }}$ damming up of, ib.; streams connected with. 9; Captain Debude's proposal to use water of, 15; water from, 17; drainage of, 113; Aboo's egcape into, 212; Khutowli escape into, ih.; region above the, ii. 114; heads of, 413 .
Western Assoffnuggur rajbuba, supply of, i. 465; feeders, ib.; course of, at sixty-fifth mile, 466.

Jumna canals, embankments on, i. 421.
White ante, ravages of, i. 246 .

Whiting, Lieutenant F., i. 98, 324, ii. 151, 628; commencement of surveys by, i. 322 ; results of levels taken by, 329; site of atation at Awa, ib.
Willonghby, Lieutenant E., i. 98; assistant to Lieutenant Hodgson, 320.
Windlasses, descriptions of, ii. 13, 14, 150, 475.

Wings of Solani aqueduct, alteration of foundations of, ii. 479.
Wood fuel, variety of, i. 90.
Working parties for regulators, ii. 96; drill of, ib.; discipline, \&c., ib.; proposed for Moonda Khera escape, Pulra falls, Simera falls, and Koel regulators, 604.
Works on Ganges canal, design of, i. 61; between Myapoor bridge and Ranipoor torrent, 136; list of, constructed below Guddunpoor bridge, 266 ; list of, below Singpoor bridge, 275 ; constructed in advance of Sooreya bridge, 292 ; list of, from bridge and escape at Kukwan, 308; executed on 1st section of Etawah terminal line, 331; description of, at Dhunowri, ii. 20; effective slope of, 22; materials of, at branch head. 101; at Bolundshuhur, 104; magnitude of, iij. 1.
Workshops, extension of, ii. 326, 339; nomination of offlcers to, 369.
Wright, Mr. T., i. 29, 38; excaration of canal begun by, ii. 550 ; brickrnaking begun by, iii. 2 ; report of, ib.; results of brickmaking, ib.
Wullipoora bridge, i. 225; crossing, 224.

Y.

Yar Wooffadar, i. 44.
Yule, Lieut., staff of, in 1848, i. 78 ; makes over charge of works, ii. 7; superintends brickmaking, iii. 3; kilns built by, 4; arrangenente of, 5 ; kilns of, superseded, $i b$.

7.

Zabitha Khnn. damage done to Behut and Suharunpoor by openiag canal of, i. 422; remains of the period when his family governed Mozuffurnuggur district, i. 207.
Zumendars, ditches made by, to Dooloo and Rulieempoor, i. 285; works appertaining to, ii. 324.

[^0]: * In the early part of June, 1854, just before brickmaking for the season closed, 15,000 bricks were made daily by the machine.

[^1]: * Kilns, 27,400 rupees ; terraces, 24,654 rupees; wells, 3,026 rupces : total, 55,080 rupees.

[^2]: * Subsequently received; and the deficiencies supplied, except for the year 1843, which is still incomplete.

[^3]: * Letter to Secretary, Sudder Buard of Revenue, dated 4th June, 1844, No. 2,111; letter from ditto, ditto, dated 2nd July, 1844 , No. 309; letter to ditto, ditto, deted 20th July, 1844, No. 2,726; letter from Commissioner Meerut Division to Secretary Sudder Bobrd of Revenue, No. 216, dated 24th July, 1844 ; letter to Secretary, Sudder Board of Revenue, No. 3,956, dated 7 thi September, 1844.

[^4]: * Bonds given to or by the offlcers of Government on account of any matter or thing of or belonging to the Government in its political or territorial capacity.

[^5]: - No. 340, dated May 25th, 1821 ; No. 345, dated July 20th, 1821 ; No. 384, dated April 29th, 1823; No. 1329, dated May 27th, 1842,

[^6]: * No. 340, 1819, Regulation VII., section 6, clause 3.

 This is superseded by a Regulation which vests the appellate power in the Sessions Court.
 \ddagger No. 345, 1819, Regulation VШ., seation 6.

[^7]: * Prony having giving no formula for the value of U, it has been calculated on Dubuat's rule $V=\frac{v+U}{\underline{2}}$.

[^8]: The column for incidental expenses is intended to provide for the registration of expenses that may sometimes be incurred when goods are to be derpatched to a distance. All advances to cartmen being made would appear here, and be duly included in the bill submitted to the purchaser. The attached form for warehouseman's "Liat of Storea deapatched "will make this plain.

[^9]: * These remarks were made merely with reference to defective supervision, and interraptions attendant on work performed at night; but, subsequent to writing them, Lieutenant E. Walker, of the Engineers, drew my attention to the fact of much greater progreas being made in sinking a well of his when workmen were emplosed at considerable intervals than when the work was carried on uninterruptedly. This was corroborated in the casc of a well surk in my own compound. The experiment was then extended to gix blocks in the Dhunouri revetment foundations, which were worked at every other day only. The record of the reult there was, however, most unfortunately vitiated by circumstances which need not be detailed; still every reason exista for believing that the result was the same as in the two former cases. Paradoxical as advocacy of intermitted block-sinking may appear, I strongly recommend its trial. Any one who has examined old kutcha wells and has observed in what way the bottoms, only, of the cylinders fall in, will mee how intermitted sinking may be recommended by argument as well as by fact. Whether, however, the benefits that might accrue from einking, thue performed, would not be counterbalanced by the extra expense of either moving the block-ninking apparatus, or of making up a double set, is a point that must depend on other circumstances; not the least important of which may be variety of soil to be worked through.-A. G. G.

[^10]: * Obtnined by dividing the sum of the products, in the sixth column, by the sum of the depthe sunk, exhibited in the fourth column, thus, $\frac{2374021}{30.07}=\mathbf{7 . 1 2}$

[^11]: *Both 261 and 263 included. "To" bears this meaning throughout the column.
 N.B. From 1 st April to 1 st Novenber, 1848 , the pay of beldars was 4 rs . per mensem; \pm beldars were employed working each December, 1848, the number of men working each jham was reduced to 3 , with 3 men removing asnd. The latter number was again caution, as, under particular circumstances, the number of men thus employed varied so considerably as to be begond description in Roorkee, 26 th August, 1851.

